
Soft Error Protection Verification via Smart
Behavioral Simulation

Abstract—This paper presents a novel approach to verify the
Single Event Upset (SEU) resilience of a given netlist basedon
smart behavioral simulation. One of the most common ways of
protecting a circuit against SEUs is Triple Modular Redundancy
(TMR), which consists of triplication of flip-flops (FFs) and
voting. In our approach, netlists hardened using TMR are
converted into a special graph representation, and are then
analyzed in order to detect any issues (that might incur during
optimization, place and route, etc.) in the TMR implementation.
Our analysis does not require a testbench and can perform
full, exhaustive coverage within less than an hour for typical
designs. This is achieved by analyzing the circuit and splitting
it into smaller submodules without loss of generality, instead
of simulating the whole netlist at once. The methodology has
been verified on a full implementation of a LEON2-FT processor,
checking exhaustively its soft-error protections.

Index Terms—Triplication verification, SEU Analysis, Be-
havioral simulation, netlist conversion, Graph Representation,
Triplet identification

I. I NTRODUCTION

Hardening circuits against radiation effects is a complex
task. At high altitude or in space, without the protection of
the earth’s magnetic field and atmosphere, integrated circuits
are exposed to radiation and heavy ion impacts that can disrupt
the circuits’ behavior.

This paper focuses on the so called Single-Event-Upset
(SEU) effects, or soft errors, usually caused by the transitof
a single high-energy particle through the chip. This particle
can upset storage elements and change their value from zero
to one or vice versa by modifying the charge at a storage
node [1]. Protection against SEUs can be done in several ways,
and in particular this work considers the protection strategy
based on triple modular redundancy (TMR), consisting of the
triplication of every storage element combined with majority
voting logic [2].

This protection can be either inserted during high level
design [3] or at a later stage by automatic netlist modification.
Typically, after a new ASIC is produced for the space market,
it undergoes a strict test campaign, including costly and time
consuming radiation tests using particle accelerators. When a
problem arises during a radiation test campaign, it is already-
too late; the first prototype ASICs have been manufactured and
the whole fabrication process needs to be rerun after fixing the
netlist. Detecting any problems before fabrication is the key,
therefore several software [4]–[7] and hardware-based [8]tools
for fault injection and verification were proposed in the past.
However, such tools either do not provide full coverage or
require extremely long simulation and/or execution times.

This paper presents a novel way to analyze the SEU
sensitivity of a given netlist by taking a gate-level netlist
as input and executing a smart behavioral simulation, and
verifying the correctness of the implemented countermeasures
against SEUs. To perform a fast analysis, we use adivide
et impera approach, transforming the input netlist into a
directed graph representation and analyzing smaller subgraphs,
without loss of generality. Results show that verifying TMR
on a 40k gates netlist is possible within around half an hour
on a standard PC. Another advantage over other traditional
simulation/verification methods is that our approach does not
rely on a testbench, allowing a full coverage test.

This paper is organized as follows: previous works on the
subject are introduced in Section II; Section III details the
algorithm together with necessary definitions, its implemen-
tation and its complexity; experimental results are shown in
Section IV, and Section V draws some concluding remarks.

II. PREVIOUS WORK

In the past, several different approaches have been proposed
for design verification against soft errors. These approaches
can be divided in two kinds: fault injection simulation and
formal verification.

Fault injection simulators run a given testbench on the de-
sign under test (DUT), flipping either randomly or specifically
targeted bits. The outputs of the DUT are then compared with
a golden model running the same testbench, and discrepancies
are reported. Fault injection simulators come in two different
flavors: on the one side there are software-based simulators
like MEFISTO-L [5] or SST [6] (which is based on Model-
sim), that allow full observability and control of the simulated
netlist. These tools are marred by extremely slow low-level
simulation, requiring hours or days of simulation, withoutany
guarantee of full coverage. On the other hand some tools use
special hardware to speed up the simulation cycle, such as FT-
Unshades [8], which uses partial reconfiguration of an FPGA
to quickly introduce single bit-flips (simulating SEUs) without
requiring modifications of the DUT. Although this provides a
consistent speedup compared to the software based approach,
it is still infeasible to run full verification of a given design,
which requires the injection of bit flips in all possible Flip-
Flops (FFs) at any possible time during the simulation. It is
also worth noting that the results of these approaches strongly
depend on the testbench used.

Formal verification against soft-errors was introduced
by [9]: the idea is to merge a formal model of the DUT with
a soft error model, proving a given set of properties on the

merged model. This requires a formal model of the DUT and
a complete and exhaustive set of formally defined properties
to be proven. In other words, the main issue of this formal
approach is that the coverage is as good as the definition of
such properties.

This work tries to overcome these limitations and provide
full SEU protection verification of a TMR-based DUT with
reasonable simulation time. The idea presented in this paper
can be classified as a fault-injection simulation, but follows a
different approach with respect to previous work: instead of
trying to simulate the whole circuit at once and doing a timing
accurate simulation, we focus on the behavioral simulation
of small submodules, extracted by automatic analysis of the
DUT internal structure, with the specific goal of detecting any
FF/voter pairs that are susceptible to SEUs.

III. PROPOSEDAPPROACH

The starting point of our analysis is a radiation hardened
circuit, protected by triplication and voting (TMR [2]). Our
objective is finding any FFs that are not adequately protected.

Starting from a given design withn FFs, a naive testing
approach for SEU-susceptible FFs would require testing all2n

possible configurations, for all of them time instants of a given
testbench. This would lead to an impractically long simulation
time, as typical as systems consist of several thousand FFs.
Our approach uses the properties of the DUT in order to
split the whole system into smaller submodules. Those small
submodules can be analyzed independently, allowing a full test
to be carried out in a reasonable timeframe.

The DUT is initially converted into a directed graph rep-
resentation, based on a post-synthesis gate-level netlist(e.g.
an EDIF file or a verilog netlist). This graph representation
consists of nodes (modeling logic gates) and edges describing
wires or interconnections between gates. Using this represen-
tation, each FFi in the DUT is selected, and the subgraph
of FFs connected toi’s input is calculated. Then, all valid
start configurations (see Definition 6) for the FFs belonging
to such a subgraph are calculated, simulating all possible bit
flip injections. For every injection, the result is comparedto
fault-free simulation: if the results differ, the FFi is marked
as susceptible to SEUs.

We implemented a prototype of the algorithm relying on
some assumptions: the whole circuit is driven by only one
clock and there are no loops inside logic without a storage
element being involved. Furthermore, it is assumed that there
are no signal conflicts inside the netlist (i.e., two-valuedlogic)
and that there are no timing violations. Finally, we assume
that all FFs have one data input, one clock source, and all
the triplets have separate reset and set lines. For the sake of
simplicity, Single Event Effects (SEEs) on the reset and set
lines are not considered, but they could be analyzed in a similar
way.

A. Mathematical model

To convert the netlist describing the circuit into a graph,
we need to introduce a special directed graph structure. The

nodes of this graph have indexed inputs and are associated to
a logic function and a value, as outlined in the following. We
assume without loss of generality that every gate has just one
output. Gates that haven 6= 1 outputs are converted inton
nodes having the same inputs, each representing one output.
Taking this into account the netlist can be easily converted
into a directed graph structure

Definition 1: A circuit graph G is defined as a tuple
{V, E, S, F}, where:

• V is a set of nodes (representing logic gates)
• E ⊆ V × V × N0 is a set of edges (representing

interconnection wires)
• S ⊆ V × {0, 1} is a set of values (representing the node

values)
• F ⊆ V × T is the set of logic functions associated to

each node, whereT is the set of computable boolean
functions

Every nodev ∈ V has1 output andnum inputs(v) ⊆ N0

inputs. The set of valid input indices for a nodev ∈ V is
given by

Nv = {1, ..., num inputs(v)}

An edge e = (x, y, i) ∈ E with x, y ∈ V and i ∈ Ny

represents a connection from nodex to the inputi of nodey.
Assuming that the input circuit is free of driving conflicts,the
circuit graph fullfills the property:

∀v, w, x ∈ V, ∀i ∈ Nv :

v 6= w ∧ (w, x, i) ∈ E =⇒ (v, x, i) 6∈ E

which means that any given input of a node is connected
to a single node output. We also assume that there are no
unconnected inputs in the circuit, which translates to the
property:

∀x ∈ V, ∀i ∈ Nx, ∃w ∈ V : (w, x, i) ∈ E (1)

To describe the algorithm, we need to define predicates that
represent node properties.

Definition 2: The set ofdirect predecessorsof nodex, i.e.
the set of nodes with a direct connection from their output to
one ofx inputs is defined as:

pre(x) = {w | ∃i ∈ Nx : (w, x, i) ∈ E}

Definition 3: Let us define the predicateis ff for a given
nodex ∈ V , which determines ifx represents a FF:

is ff(x) =

{

true

false

if x ∈ V is a FF or in-/output node
else

For the sake of simplicity, top-level in-/outputs are considered
as FFs with no inputs. The set of nodes that represent FFs is:

VFF = {x | ∀x ∈ V, is ff(x)}

Definition 4: We define the set of nodes which are directly
and indirectly connected to the inputs of a given nodex ∈ V as

thesmallestsetpre ffs(x) for which the following properties
hold ∀w ∈ pre(x):

is ff(w) =⇒ w ∈ pre ffs(x)

¬is ff(w) ∧ v ∈ pre ffs(w) =⇒ v ∈ pre ffs(x)

Having defined the FFs as just having one input (see Sec-
tion III) we can define the driving node for a given FF as

Definition 5: A driver for FF x ∈ VFF is defined as:

driver(x) = {y | (y, x, 1) ∈ E}

Finally, we need the operators to compute the values associated
to each node:

Definition 6: The value of a nodex ∈ V is given by the
eval operator, defined as:

eval(x) =

{

evalFF (x)
evalL(x)

if x ∈ VFF

else

whereevalF F returns the value stored in FFx:

evalFF (x) = {a | (x, a) ∈ S}

and evalL computes the value of logic (i.e., non FF) nodes,
which depends on the node input values:

evalL(x) ={f(eval(y1), ..., eval(yn))

| (x, f) ∈ F, yi ∈ pre(x)}

We also define theconfigurationof a set of FFsxi ∈ VFF as

config(x1, ..., xn) = (eval(x1), ..., eval(xn))

A configurationconfig(x1, ..., xn) is defined asvalid when
two FFs driven by the same logic value share the same value
for all configurations:

∀x1, ..., xn ∈ VFF , ∀i ∈ Nxi
, ∀j ∈ Nxj

:
driver(xi) ≡ driver(xj) =⇒ eval(xi) = eval(xj)

with ≡ being defined as functionally identical (see Defini-
tion 7).

B. Triplet identification

To determine a useful set of valid configurations for a
subgraph, it is necessary to identify which FFs are triplicated,
as all the FFs belonging to a triplet have to share the same
value. However, if the gate naming scheme of a given netlist
cannot be relied upon, this is not an easy task. A base
assumption for triplet identification is that all triplicated FFs
are driven by the same source. An algorithm based on this fact
is able to find most triplets, but this simple mechanism is not
always sufficient for more complex netlists.

During synthesis, netlists are often optimized in a way that
voids this property. Figure 1 shows an example: Voter 2 was
partially duplicated using other logic elements, with T2OR
and T3 NOT delivering the same values for all configurations
of T2 FF *, thus leaving T1FF 2 with a different set of
inputs with respect to the other members of the triplet. The
synthesizer introduces this redundancy for delay optimization,
place and route constraints, etc. Therefore, we assume thattwo

Voter 1

Voter 2

T1_OR

T1_AND_0

T1_AND_1

T1_AND_2

T1_FF_0

T1_FF_1

T1_FF_2 T3_NOT

T2_FF_0

T2_AND_0

T2_AND_2

T3_AND_0

T2_FF_1T2_AND_1

T2_FF_2
T2_OR

T3_NOR

Fig. 1. Voter after optimization

FFs belong to one triplet(-group) if they are both driven by
functionally identicalnodes.

Definition 7: Two nodesx1 and x2 are functionally iden-
tical (x1 ≡ x2) if pre ffs(x1) = pre ffs(x2) and
eval(x1) = eval(x2) for all possible configurations of
pre ffs(·).

The test of all possible configurations for functionally iden-
tical inputs might be impractical, as it grows with2pre ffs(x).
However, wrong triplet identification affects the verification of
TMR protection only with the reporting offalse positives, i.e.
reporting a faulty triplicated structure when there is not one.

function: functionally_identical(x,y)
input : nodesx, y ∈ V
output : number of matching configurations∈ N0

if driving ffs(x) 6= driving ffs(y) then1
return 0;2

end3
mark_graph(x);4
(v1, ..., vk) ← find_marked(y, x);5
count ← 0;6
foreach c ∈ config(v1, ..., vk) do7

for i← 1 to k do8
value(vi)← ci;9

end10
if eval(x) = eval(y) then11

count ← count + 1;12
end13

end14
return count;15

Algorithm 1 : functionally_identical(x,y)

Therefore, we propose a heuristic algorithm in three steps.
The first step checks the sets of driving FFs for equality
(see Algorithm 1, lines 1-3) before starting fromx (Fig-
ure 1,T 1 FF 2) and traversing the graph depth first, marking
all visited nodes (shown as a second circle in Figure 1), until
a FF is visited and marked (Alg. 1, line 4).

In a second step the algorithm starts again fromy (Figure 1,
T1 FF 1) and traverses the graph until reaching a marked
node. If an unmarked FF is traversed, this shows thatx andy

are not functional identical1 in the same clock cycle, and the
algorithm aborts. After terminating successfully, the algorithm
returns the set of marked nodes (Alg. 1, line 5). For the

1assuming no FFs were duplicated during optimization

example in Figure 1 this would be T2AND 1, T2 AND 2,
T2 FF 2.

The third step verifies that all configurations for this set
have the same values forx andy. This is done by assigning
all possible configurations to this set (Alg. 1, lines 7-10) and
evaluating the subgraph forx, y to compare the results (line
11). Checking all possible configurations, as opposed to only
valid ones, might result in functionally identical nodes not
being identified. Instead of drawing a sharp yes/no conclusion,
the number of matching configurations is compared for all
possible triplet allocations, and the best one is used to assign
the FFs. In other words, the nodesxi and xj belong to the
same triplet(-group) for whichi and j (i 6= j) result in the
largest number of matching configurations.

It is worth noting that the worst case scenario for this fast
heuristic, i.e. when all FFs are reported as false positives,
is when both subgraphs share only the driving FFs and the
whole subgraph is duplicated. This is unlikely to happen when
analyzing real world netlists, because synthesizers optimize
away most redundant parts and introduce redundancy only in
rare cases. For the designs used in this work, the non-shared
subgraph size is typically less than nine gates as shown by
Figure 3.

C. Simulation Algorithm

As stated in Section III the input of our algorithm is a
radiation hardened circuit protected by triplication. Before
starting the analysis, we optimize our description by removing
(for our analysis) unnecessary elements as one-to-one buffer
gates. This is done during netlist parsing. As such buffers do
not manipulate the logic value of a signal; it is easy to see that
the logic functions are not changed when they are removed.

If the TMR implementation were working correctly, a single
bit-flip in one FF should not cause another FF to change its
value. If a faulty triplicated FF/voter pair exists, there is at
least one FF whose value can be changed by a single bit-flip
in another FF. This is true only if the configuration before
the bit-flip injection was a valid configuration. The algorithm
tries to find such FFs, and if none is found, TMR is correctly
implemented.

The main idea of the test algorithm is that complexity can
be reduced by checking only small submodules instead of the
whole system. In order to do this, we observe that a bit-flip in
one FF can only distribute to the next FF during the current
clock cycle. It is then possible to determine the set of all FFs
which could potentially influence a given FFx ∈ VFF , i.e.
pre ffs(x).

The algorithm takes each FFxi and determines the set
of FF that are connected to it via logic only (no memory
elements), and tests every possible bit flip for every possible
valid configuration. If any of these bit flips is able to change
xi stored value, then the algorithm detected a fault in the TMR
implementation. More formally, Algorithm 2 describes this
behavior in pseudocode (whereabort interrupts execution
and shows a message to the user). As the analysis has
to be performed for allx ∈ VFF , simulation times might be

function: analyze(x)
input : a nodex ∈ V

(y1, ..., yk) ←pre_ffs(x);1
foreach valid c ∈ config(y1, ..., yk) do2

for i← 1 to k do3
value(yi)← ci;4

end5
init value ← evalF F (x);6

foreach 1-bit mutationc′ of c do7
for i← 1 to k do8

value(yi)← c′i;9
end10
mut value ← eval(x);11
if mut value 6= init value then12

abort(FF x sensitive to SEUs);13
end14

end15
end16

Algorithm 2 : analyze(x)

excessively long. To reduce runtime, this algorithm has to be
extended to handle large sets of driving FFs(y1, ..., yk). If the
number of elementst = |pre ffs(x)| in such a set exceeds a
given threshold, the graph will be split into smaller subgraphs
until the threshold is reached, as outlined in Section III-D.

D. Splitting algorithm

Analyzing typical designs with the proposed algorithm
showed that the majority of FFs are driven by a very small
set of FFspre ffs(x) (typically less than 9, see Figure 3).
However there are a few FFs that are driven by a large number
of FFs (for some designs 500 or more). Those subgraphs
cannot be analyzed directly as they require2n configurations
to be evaluated, and heuristics have to be devised.

A naive approach would use “divide et impera”, splitting
every node where|pre ffs(yi)| > threshold, starting from
the FF to be analyzed. This approach works for most FFs but
fails if the synthesizer merged a voter with other logic during
optimization. As an example, a 3-OR gate of a voter might be
merged with a following OR gate into a 4-OR gate. Splitting
could break the voter and result in a false positive alert.

Let childi be the nodes connected to the inputs of nodex.
To avoid breaking voting logic, instead of splitting using the
threshold only, the originating node is kept and the subgraphs
for the nodeschildi with |pre ffs(childi)| > threshold are
replaced by dummy input nodes (Alg. 3, lines 3-7). Every
Node childi is tested recursively according to Algorithm 2
with the divide et impera approach.

Afterwards, all possible bit configurations are assigned to
the dummy inputs connected tox (lines 12-14). Analyzingx
for such configurations ensures thatx is tested for all possible
substates previously generated by the removed nodeschildi.

It is worth noting that this heuristic relies on the fact
that synthesizers tend to keep the voting logic close to the
originating FFs, and therefore splitting subgraphs with a large
number of inputsusuallydoes not result in voters to be broken.

function : split_analyze(x)
input : a nodex ∈ V

split required ← false;1
foreach child ∈ pre(x) do2

if |pre ffs(child)| > THRESHOLD then3
replace_input(x, child, dummy);4
split_analyze(child);5
split required ← true;6

end7
end8
if split required then9

(d1, ..., dk) ← get_dummynodes(x);10

foreach c ∈ config(d1, ..., dk) do11
for i← 1 to k do12

value(di)← ci;13
end14
analyze(x);15

end16
else17

analyze(x);18
end19

Algorithm 3 : split_analyze(x)

However, it cannot be excluded that some voting logic might
be broken, resulting in some rare false positive alerts (see
Section IV). This will never hide any SEU sensitive parts:
if TMR is not properly implemented, it will be detected. In
case the algorithm reports a SEU-sensitive FF, testing witha
higher threshold value or manual inspection can identify ifit
represents a false positive.

E. Algorithm complexity analysis

Given m = |V | and n = |VFF |, being the total number
of gates and FFs, respectively, a naive exhaustive search
would result in2n possible FF configurations to test, requiring
O(m2n) node evaluations.

Determining a subgraph to be analyzed for every node
x ∈ VFF , gives n subgraphs to verify. Using the properties
presented in Section III-C, the algorithm has to checkpx =
|pre ffs(x)| FFs, with typical designs showing that in general
px ≪ n. As described in Section III-C, the algorithm limits
px to a given thresholdt by splitting the graph into subgraphs.
Therefore there are less than2t valid configurations we have
to evaluate for every subgraph (assuming FF triplication, we
expect less than2

t
3 valid configurations). As we are testing

one bit-flip at a time, we need to performt injections on
every valid configuration. Obviously, the number of subgraphs
obtained after splitting and their sizes cannot exceed the total
number of gatesm, resulting in less thann ·2t · t ·m subgraph
evaluations. Overall, the algorithm performsO(nm2) node
evaluations, showing polynomial behavior and outperforming
other exponential verification methods.

IV. EXPERIMENTAL RESULTS

The algorithm presented in Section III-C was implemented
as a C++ program called XXX2. The graph is obtained in

2name omitted for blind review

TABLE I
RUNTIME COMPARISON BETWEENFT-UNSHADES AND XXX WITH

THRESHOLDS15 AND 21

Testcase # gatesa # FFs FT-Ub XXX-15 XXX-21
resetgen 648 30 8h <1m <1m
pci mas 14379 453 5d 5h <1m 2m
pci tar 13768 546 6d 7h <1m 10m
mctrl 35357 1251 14d 11h 1m 1m
fpu 66967 1437 16d 15h 10m 10m
amod 87193 3303 38d 5h 1m 3m
iu 147894 4224 48d 21h 8m 406m
pci 190987 7974 92d 7h 4m 264m

aGatecount after mapping library to standard logic cells
bnot exhaustive

two steps: first a given Verilog netlist is converted into an
intermediate file format, which is then read and analyzed by
XXX. This separation makes the parser independent from
the main program, allowing easy development of parsers for
different input files.

The graph itself was implemented in a custom structure,
using pointers whenever possible and STL [10] maps, vectors,
and sort algorithms to maximize speed. In order to be ASIC
library independent, the parser is able to read library celldef-
initions and design netlists, and to map all custom ASIC cells
to standard gates (AND, OR, ...). If the ASIC library makes
use of non-standard cells, the parser and XXX can be easily
enhanced. The tool requires no user input during runtime, and
shows status information like the overall progress, which gate
is being processed etc.

The implementation was tested on the submodule netlists
of a radiation hardened LEON2-FT processor [11]. Table I
shows the results of our tests with a threshold of 15 and 21,
and compares the runtime with the expected runtime of FT-
Unshades [8]. All tests were performed on a 2.66GHz Intel
Core Duo workstation. The runtime for the FT-Unshades test
was calculated based on ideal assumptions with a testbench
with 200000 clock cycles and injecting in every possible
FF, Assuming 5ms runtime for each test. It is worth noting
that this short testbench duration cannot cover all possible
internal substates therefore resulting in a non exhaustivetest.
A testbench that covers all internal substates is hard or even
impossible to find and the simulation time would be so high to
render the analysis impractical. As shown, compared with the
FT-Unshades toolchain, which introduces a consistent speedup
with respect to PC based simulators, our approach is several
orders of magnitude faster.

Comparing XXX to an exhaustive approach, for example
for the pci submodule, we have that this module is verified in
less than7974 ·2

15

3 ·15 ·1909872 ≈ 1.3 ·1017 node evaluations
(thresholdt = 15). A naive approach would require190987 ·
27974 ≈ 4.9 · 102405 evaluations, showing that XXX provides
orders of magnitude of speedup.

As the actual runtime of XXX depends on the choice of
the threshold presented in Section III-D, we tested several
threshold values to determine the speed of the algorithm. In

 0

 10

 20

 30

 40

 50

 60

 70

 3 6 9 12 15 18 21 24

of

 fa
ls

e
po

si
tiv

es

threshold

false positives

 3 6 9 12 15 18 21 24
 0

 2

 4

 6

 8

 10

 12

 14

 16

ru
nt

im
e

(h
)

threshold

runtime

Fig. 2. Runtime and false positive count trend with increasing threshold

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

0-9 10-18 19-36 37-54 55-72 73-96 >96

co
un

t

#of driving FFs per subgraph

16796 before splitting
after splitting

37
18

35
1

70
33

63
2 19

51

73
0

30 30
3

0 21
5

0

18
10

0

Fig. 3. Size classification of subgraphs before and after splitting

genera, smaller thresholds result in shorter runtimes withthe
drawback of more false positive alerts because of voters that
have been broken during subgraph splitting. False positives
have to be analyzed by manual graph inspection, or with
other means. Figure 2 shows how overall runtime and number
of false positives vary with increasing threshold, for all nine
netlists of the LEON2-FT processor, with a total 19218 FFs
and 570959 gates.

The sum of false positives for all nine given designs goes
from 63 down to 12 The overall runtime goes from 19 minutes
up to 13 hours. For a suggested threshold of 15, the runtime
is around 25 minutes. Please note that the runtime strongly
correlates to the internal structure of the design, especially the
subgraph sizes, and therefore it is subject to large fluctuations
among the designs.

To show the effectiveness of the subgraph splitting, the
algorithm was tested on the nine netlists, logging the different
subgraph sizes before and after splitting (with threshold=15).
Figure 3 shows the results of this test. Before splitting, there
are 1810 subgraphs that consist of> 96 driving gates. Assum-
ing correct triplication this would result in more than232 valid
configurations to be checked for each of those nodes, making
the splitting heuristic an essential component of our approach.
In fact, after splitting the situation is completely different: even
though the splitting results in many more subgraphs to be
checked, the subgraph sizes are much smaller. There are no
subgraphs with more than 54 driving gates, giving no more
than218 valid configurations

Finally, to show its fault detecting capabilities, XXX was
verified on a netlist (moduleiu in Table I) with broken voters.
The netlist used for this test consists of 1408 triplets (4224
FFs). For the test run 898 triplets were automatically selected,
and their voters manipulated by changing the voter function
from f(x1, x2, x3) = (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x1) to
f(x1, x2, x3) = x1∨x2∨x3. This should result inn = 898 ·3
SEU-sensitive FFs being detected. XXX reported problems in
n = 899 ·3 FFs: all unprotected triplets plus one false positive.

V. CONCLUSIONS& FUTURE WORK

In this work we presented an algorithm to verify TMR
implementation for given netlists. Performing exhaustiveveri-
fication without the need of a testbench, this approach does not
suffer under the quality and coverage of the given testbench
as other solutions. First results show that verification of
production-ready netlists can be carried out within few hours.
To the best of the authors’ knowledge, no other approach
provides this kind of performance.

Future work includes replacing the actual simulation/in-
jection step with the identification of triplets followed by
formal verification of the correct propagation of flip-flop
values through the voting logic. Another technique under study
is to merge some of the ideas into future hardware-accelerated
fault injectors. The triplet identification heuristic presented in
this work, or the graph structural knowledge of independent
subgraphs could be used to allow multiple injections at one
time and thus reducing the test’s runtime.

REFERENCES

[1] George C. Messenger and Milton S. Ash,The effects of radiation on
electronic systems, 2nd ed. Van Nostrand Rinhold, 1986.

[2] C. Carmichael, XAPP197: Triple module redundancy design
techniques for Virtex FPGAs, Xilinx Inc., July 2006. [Online].
Available: http://www.xilinx.com/support/documentation/application
notes/xapp216.p%df

[3] Sandi Habinc, “Functional Triple Modular Redundancy,”Gaisler
Research, Tech. Rep., 2002. [Online]. Available: http://www.gaisler.
com/doc/fpga003 01-0-2.pdf

[4] G. Kanawati and J. Abraham, “Ferrari: a flexible software-based fault
and error injection system,”Computers, IEEE Transactions on, vol. 44,
pp. 248–260, 1995.

[5] J. Bou, P. Ptillon, and Y. Crouzet, “Mefisto-l: A vhdl-based fault
injection tool for the experimental assessment of fault tolerance.” IEEE
Computer Society, 1998, p. 168.

[6] J. A. Maestro,SST 2.0: User Manual, Universidad Antonio de Nebrija,
November 2006. [Online]. Available: http://www.nebrija.es/∼ jmaestro/
esa/docs/SST-UserManual2-0.pdf

[7] K. K. Goswami, R. K. Iyer, and L. Young, “Depend: A simulation-based
environment for system level dependability analysis,”IEEE Transactions
on Computers, vol. 46, no. 1, pp. 60–74, 1997.

[8] M. Aguirre, J.N. Tombs, V. Baena-Lecuyer, F. Muñoz, A. Torralba,
A. Fernández-León, and F. Tortosa-López, “FT-UNSHADES: A new
System for Seu Injection, analysis and diagnostics over post synthesis
netlist,” MAPLD’2005, Nasa Military and Aerospace Programmable
Logic Devices, Sep. 2005.

[9] S. A. Seshia, W. Li, and S. Mitra, “Verification-guided soft error
resilience,” in Proc. Design Automation and Test in Europe (DATE),
April 2007.

[10] Standard Template Library, SGI. [Online]. Available: http://www.sgi.
com/tech/stl

[11] J. Gaisler, “The LEON2 IEEE-1754 (SPARC V8) Processor,” Gaisler
Research, 2003. [Online]. Available: http://www.gaisler.com

