Soft Error Protection Verification via Smart
Behavioral Simulation

Abstract—This paper presents a novel approach to verify the ~ This paper presents a novel way to analyze the SEU
Single Event Upset (SEU) resilience of a given netlist basesh sensitivity of a given netlist by taking a gate-level netlis
smart behavioral simulation. One of the most common ways of as input and executing a smart behavioral simulation, and

protecting a circuit against SEUs is Triple Modular Redundancy ifvina th t f the imol ted ¢
(TMR), which consists of triplication of flip-flops (FFs) and veritying the correctness of the implemented countermessu

voting. In our approach, netlists hardened using TMR are @against SEUs. To perform a fast analysis, we usdivéde
converted into a special graph representation, and are then et impera approach, transforming the input netlist into a
analyzed in order to detect any issues (that might incur dumg directed graph representation and analyzing smaller spbgg
optimization, place and route, efc.) in the TMR implementaion. —\yinqut loss of generality. Results show that verifying TMR
Our analysis does not require a testbench and can perform . . -

full, exhaustive coverage within less than an hour for typial on a 40k gates netlist is possible within around half an.hour
designs_ This is achieved by ana|yzing the circuit and Spﬁhg on a Standard PC Another adVantage over Othel’ tl’adltlonal
it into smaller submodules without loss of generality, instad simulation/verification methods is that our approach daas n
of simulating the whole netlist at once. The methodology has rely on a testbench, allowing a full coverage test.

been verified on a full implementation of a LEON2-FT processn This paper is organized as follows: previous works on the

hecki haustively its soft- tections. . .) - . .
¢ ?ﬁdg(g 'Ie';(rrr?:i'll\'?iep)lliclastisr? Veerézzg)tzgr:ec 223 Analysis, Be- subject are introduced in Section Il; Section Il detail® th

havioral simulation, netlist conversion, Graph Represenation, ~&lgorithm together with necessary definitions, its impleme
Triplet identification tation and its complexity; experimental results are shown i

Section 1V, and Section V draws some concluding remarks.

. INTRODUCTION Il. PREVIOUS WORK

Hardening circuits against radiation effects is a complex In the past, several different approaches have been propose
task. At high altitude or in space, without the protection dbr design verification against soft errors. These appresch
the earth’s magnetic field and atmosphere, integrateditsrcican be divided in two kinds: fault injection simulation and
are exposed to radiation and heavy ion impacts that cangdisrformal verification.
the circuits’ behavior. Fault injection simulators run a given testbench on the de-

This paper focuses on the so called Single-Event-Ups#gin under test (DUT), flipping either randomly or specifigal
(SEV) effects, or soft errors, usually caused by the trafsit targeted bits. The outputs of the DUT are then compared with
a single high-energy particle through the chip. This pltica golden model running the same testbench, and discregancie
can upset storage elements and change their value from zare reported. Fault injection simulators come in two défer
to one or vice versa by modifying the charge at a storadiavors: on the one side there are software-based simulators
node [1]. Protection against SEUs can be done in several,waijiee MEFISTO-L [5] or SST [6] (which is based on Model-
and in particular this work considers the protection sgte sim), that allow full observability and control of the sinatgd
based on triple modular redundancy (TMR), consisting of theetlist. These tools are marred by extremely slow low-level
triplication of every storage element combined with majori simulation, requiring hours or days of simulation, withauty
voting logic [2]. guarantee of full coverage. On the other hand some tools use

This protection can be either inserted during high levepecial hardware to speed up the simulation cycle, such-as FT
design [3] or at a later stage by automatic netlist modiftcati Unshades [8], which uses partial reconfiguration of an FPGA
Typically, after a new ASIC is produced for the space market quickly introduce single bit-flips (simulating SEUS) taiut
it undergoes a strict test campaign, including costly antkti requiring modifications of the DUT. Although this provides a
consuming radiation tests using particle acceleratorseWh consistent speedup compared to the software based approach
problem arises during a radiation test campaign, it is dliyea it is still infeasible to run full verification of a given desgi,
too late; the first prototype ASICs have been manufacturdd amhich requires the injection of bit flips in all possible Flip
the whole fabrication process needs to be rerun after fixieg tFlops (FFs) at any possible time during the simulation. It is
netlist. Detecting any problems before fabrication is tleg,k also worth noting that the results of these approachesgitron
therefore several software [4]-[7] and hardware-basetbf@$ depend on the testbench used.
for fault injection and verification were proposed in thetpas Formal verification against soft-errors was introduced
However, such tools either do not provide full coverage day [9]: the idea is to merge a formal model of the DUT with
require extremely long simulation and/or execution times. a soft error model, proving a given set of properties on the

merged model. This requires a formal model of the DUT amibdes of this graph have indexed inputs and are associated to

a complete and exhaustive set of formally defined propertiadogic function and a value, as outlined in the following. We

to be proven. In other words, the main issue of this formaksume without loss of generality that every gate has just on

approach is that the coverage is as good as the definitionooftput. Gates that have # 1 outputs are converted into

such properties. nodes having the same inputs, each representing one output.
This work tries to overcome these limitations and providéaking this into account the netlist can be easily converted

full SEU protection verification of a TMR-based DUT withinto a directed graph structure

reasonable simulation time. The idea presented in thisrpapeDefinition 1: A circuit graph G is defined as a tuple

can be classified as a fault-injection simulation, but feca {V, E, S, F'}, where:

different approach with respect to previous work: insteéd o , 1/ is a set of nodes (representing logic gates)

trying to simulate the whole circuit at once and doing a tignin | g C VxVxN,is a set of edges (representing

accurate simulation, we focus on the behavioral simulation jnterconnection wires)

of small submodules, extracted by automatic analysis of the, ¢ - 1/ « {0,1} is a set of values (representing the node

DUT internal structure, with the specific goal of detectimy a values)
FF/voter pairs that are susceptible to SEUs. « F C V x T is the set of logic functions associated to
I1l. PROPOSEDAPPROACH each node, wherd is the set of computable boolean
functions

The starting point of our analysis is a radiation harden .
circuit, protected by triplication and voting (TMR [2]). ©u eﬁ\ﬁ%n‘?g?sgt ‘gfh\?:iiij ?#;zl:ti:é]igzzﬁlg;?lﬁﬁéz)e QVI\E

objective is finding any FFs that are not adequately protecte .
Starting from a given design with, FFs, a naive testing given by)

approach for SEU-susceptible FFs would require testing“all Ny = {1, ..., num_inputs(v)}

possible configurations, for all of the time instants of a given

testbench. This would lead to an impractically long sinmalat gesents a connection from nadeo the inputi of nodey.

time, as typical as systems consist of several thousand Fks, . . L L .

. . Ssuming that the input circuit is free of driving conflictee
Our approach uses the properties of the DUT in order E[;(ID cuit araph fullfills the property:
split the whole system into smaller submodules. Those smaﬁ grap property:
submodules can be analyzed independently, allowing agfstl t Yo, w,z € V,¥i € N, :
to be carried out in a reasonable timeframe. vEwA(w,2,0) € B — (0,2,i) ¢ E

The DUT is initially converted into a directed graph rep-
resentation, based on a post-synthesis gate-level n@ligt which means that any given input of a node is connected
an EDIF file or a verilog netlist). This graph representatiog a single node output. We also assume that there are no

consists of nodes (modeling logic gates) and edges desgribiinconnected inputs in the circuit, which translates to the
wires or interconnections between gates. Using this represproperty:

tation, each FF in the DUT is selected, and the subgraph

of FFs connected t@’'s input is calculated. Then, all valid Ve € V,Vi€ Ny, Jw eV (w,x,i) € E 1)

start configurations (see Definition 6) for the FFs belongi

to such a subgraph are calculated, simulating all possiible)

flip injections. For every injection, the result is compated repres-,eln.t node propertles.. .

fault-free simulation: if the results differ, the FFis marked Definition 2: The set ofdirect predecessorsf nodex, i.e.

as susceptible to SEUS. the set o_f nodes W|th_a direct connection from their output to
We implemented a prototype of the algorithm relying off"€ Ofz inputs is defined as:

some assumptions: the Whole.cw.cwt |s.dr|v.en by only one pre(z) = {w | 3i € Ny : (w,z,i) € E}

clock and there are no loops inside logic without a storage

element being involved. Furthermore, it is assumed thatthe Definition 3: Let us define the predicai@_ff for a given

are no signal conflicts inside the netlist (i.e., two-vall®gic) nodex € V, which determines if: represents a FF:

and that there are no timing violations. Finally, we assume . . .

that all FFs have one data input, one clock source, and all ;7 () _ { true if x € V' is a FF or in-/output node

the triplets have separate reset and set lines. For the $ake 0 false else

ls_lmpllcny, Stlngle Even; Eﬁ?frfs (SEFT?bon th? re;gt :;d SI%r the sake of simplicity, top-level in-/outputs are caolesed
Ines are not considered, but they could be analyzed In a81Ml,s FEs with no inputs. The set of nodes that represent FFs is:

way.
Vir ={z|Vz eV is_ff(zx)}

An edgee = (z,y,i) € E with z,y € V andi € N,

n
fo describe the algorithm, we need to define predicates that

A. Mathematical model

To convert the netlist describing the circuit into a graph, Definition 4: We define the set of nodes which are directly
we need to introduce a special directed graph structure. Téoed indirectly connected to the inputs of a given node V' as

thesmallestsetpre_f fs(z) for which the following properties Voter 2
hold Vw € pre(x):

Voter 1

is_ff(w) = wepre_ffs(x)
—is_ff(w)Av € pre_ffs(w) = v € pre_ffs(x)
Having defined the FFs as just having one input (see St

tion 1ll) we can define the driving node for a given FF as
Definition 5: A driver for FF = € Vg is defined as:

driver(z) ={y | (y,z,1) € E} Fig. 1. Voter after optimization

Finally, we need the operators to compute the values assdcia
to each node:

Definition 6: The value of a node: € V is given by the
eval operator, defined as:

FFs belong to one triplet(-group) if they are both driven by
functionally identicalnodes.
Definition 7: Two nodesz; and z, are functionally iden-

(2) = evalpp(z) if v € Vip tical (xr1 = a2) if pre_ffs(x1) = pre_ffs(x2) and
evanr) = evalr(z) else eval(x1) = eval(z) for all possible configurations of
hereeval p F' returns the value stored in FE pre_f7s(). .) . . .
W coatr . val I The test of all possible configurations for functionallyrde

evalpp(z) = {a| (z,a) € S} tical inputs might be impractical, as it grows wigh"e-//s(*),

deval tes th | f loaic (i FF d However, wrong triplet identification affects the verifiicat of
ar;]_ ehmé L co(rjnpu etsh € Vc? ue o N og||c (|..e., non FF) no MR protection only with the reporting d&lse positivesi.e.
which depends on he node input values: reporting a faulty triplicated structure when there is noeo

evalr,(x) ={f(eval(y1), ..., eval(y,))

| (z, f) € F,y; € pre(z)} function: functi onal I'y_i denti cal (X, y)
_ _) input : nodesz,y €V
We also define theonfigurationof a set of FFsr; € Vipp as output : number of matching configurations Ny
config(xy,....,xn) = (eval(xy), ..., eval(xy,)) i driving_f.fs(a:) # driving_f fs(y) then
| return O;
end

A configurationconfig(z1, ..., z,) is defined asvalid when
two FFs driven by the same logic value share the same valu
for all configurations:

mar k_graph(z);

(v, ..., vk) < Tind_marked(y, z);
count «— 0O;

7 foreach ¢ € confi g(vi,...,v;) do
8 for i < 1to k do

O?U'IrD-bL\JNl—‘

Va1, ..,y € Vep,Vi € N$7,VJ S ij :

driver(z;) = driver(z;) = eval(x;) = eval(x;) 9 | value(v)— ci;
. _10 end
Wlth = being defined as functionally identical (see Defini " it eval(z) = cval(y) then
tion 7). 12 | count — count + 1;
. . L 13 end
B. Triplet identification 14 end

To determine a useful set of valid configurations for g 15 return count;
subgraph, it is necessary to identify which FFs are tripdida
as all the FFs belonging to a triplet have to share the sam
value. However, if the gate naming scheme of a given netlistTherefore, we propose a heuristic algorithm in three steps.
cannot be relied upon, this is not an easy task. A baSee first step checks the sets of driving FFs for equality
assumption for triplet identification is that all tripliestt FFs (see Algorithm 1, lines 1-3) before starting from (Fig-
are driven by the same source. An algorithm based on this face 1;7'1_FF_2) and traversing the graph depth first, marking
is able to find most triplets, but this simple mechanism is natl visited nodes (shown as a second circle in Figure 1)] unti
always sufficient for more complex netlists. a FF is visited and marked (Alg. 1, line 4).

During synthesis, netlists are often optimized in a way that In a second step the algorithm starts again frp(figure 1,
voids this property. Figure 1 shows an example: Voter 2 wad_FF 1) and traverses the graph until reaching a marked
partially duplicated using other logic elements, with_ TR node. If an unmarked FF is traversed, this shows thandy
and T3 NOT delivering the same values for all configurationare not functional identichlin the same clock cycle, and the
of T2_FF_*, thus leaving TLFF_2 with a different set of algorithm aborts. After terminating successfully, theagithm
inputs with respect to the other members of the triplet. Theturns the set of marked nodes (Alg. 1, line 5). For the
synthesizer introduces this redundancy for delay optitiina
place and route constraints, etc. Therefore, we assumembat lassuming no FFs were duplicated during optimization

eAlgori’[hm 1: functionally_identical (x,Y)

example in Figure 1 this would be TAND_1, T2 AND_2, function: anal yze(x)
T2 _FF 2. input :anodex €V
The third step verifies that all configurations for this set 1 (y1,...,yx) <pre_ffs(z);
have the same values farandy. This is done by assigning| 2 foreachvalid c € confi g(yi,...,yx) do
all possible configurations to this set (Alg. 1, lines 7-16)ja | 3 | for i< 110 kdo
evaluating the subgraph far, y to compare the results (line : e|ndvalue(yi)<— b
11). Checking all possible configurations, as opposed tg onl g init_value — evalpp(z);
valid ones, might result in functionally identical nodestng 7 foreach 1-bit mutationc’” of ¢ do
being identified. Instead of drawing a sharp yes/no conafysi| 8 for i — 1to k do
the number of matching configurations is compared for all ° | value(y:)— ci;
possible triplet allocations, and the best one is used tigrass ii ?nnu(:_value — eval(z);
the FFs. In other words, the nodes and z; belong to the | ,, if mut_value # init_value then
same triplet(-group) for which and j (i # j) result in the | 13 | abort (FF z sensitive to SEUs
largest number of matching configurations. 14 end
It is worth noting that the worst case scenario for this fast' | end
heuristic, i.e. when all FFs are reported as false positives16 end

is when both subgraphs share only the driving FFs and the Algorithm 2: anal yze(x)

whole subgraph is duplicated. This is unlikely to happenmhe

analyzing real world netlists, because synthesizers agpdim

away most redundant parts and introduce redundancy onlygcessively long. To reduce runtime, this algorithm haseo b
rare cases. For the designs used in this work, the non-shaggghnded to handle large sets of driving KEs, ...,y). If the
Sl_Jbgraph size is typically less than nine gates as shown Rymber of elements — lpre_f fs(z)| in such a set exceeds a
Figure 3. given threshold, the graph will be split into smaller sulpjis

C. Simulation Algorithm until the threshold is reached, as outlined in Section llI-D

As _stated in Sectiqn I!I the input of our glgqrithm is gy splitting algorithm
radiation hardened circuit protected by triplication. &ef
starting the analysis, we optimize our description by reimgv ~ Analyzing typical designs with the proposed algorithm
(for our analysis) unnecessary elements as one-to-onerbufftowed that the majority of FFs are driven by a very small
gates. This is done during netlist parsing. As such buffers et of FFspre_f fs(z) (typically less than 9, see Figure 3).
not manipulate the logic value of a signal; it is easy to se¢ tHiowever there are a few FFs that are driven by a large number
the logic functions are not changed when they are remove@f FFs (for some designs 500 or more). Those subgraphs
If the TMR implementation were working correctly, a singlé€annot be analyzed directly as they requifeconfigurations
bit-flip in one FF should not cause another FF to change & be evaluated, and heuristics have to be devised.
value. If a faulty triplicated FF/voter pair exists, thesedt A naive approach would use “divide et impera”, splitting
least one FF whose value can be changed by a single bit-iyery node wherépre_f fs(y;)| > threshold, starting from
in another FF. This is true only if the configuration beforéhe FF to be analyzed. This approach works for most FFs but
the bit-flip injection was a valid configuration. The algbrit ~ fails if the synthesizer merged a voter with other logic dgri
tries to find such FFs, and if none is found, TMR is correctlgptimization. As an example, a 3-OR gate of a voter might be
implemented. merged with a following OR gate into a 4-OR gate. Splitting
The main idea of the test algorithm is that complexity cagould break the voter and result in a false positive alert.
be reduced by checking only small submodules instead of thé-et child; be the nodes connected to the inputs of node
whole system. In order to do this, we observe that a bit-flip ifo avoid breaking voting logic, instead of splitting usirfget
one FF can only distribute to the next FF during the currefitreshold only, the originating node is kept and the subggap
clock cycle. It is then possible to determine the set of als FFor the nodes:hild; with |pre_f fs(child;)| > threshold are
which could potentially influence a given FF € Vip, i.e. replaced by dummy input nodes (Alg. 3, lines 3-7). Every
pre_f fs(z). Node child; is tested recursively according to Algorithm 2
The algorithm takes each FE; and determines the setwith the divide et impera approach.
of FF that are connected to it via logic only (no memory Afterwards, all possible bit configurations are assigned to
elements), and tests every possible bit flip for every ptssiihe dummy inputs connected to(lines 12-14). Analyzinge
valid configuration. If any of these bit flips is able to changtor such configurations ensures thais tested for all possible
x; stored value, then the algorithm detected a fault in the TM$ubstates previously generated by the removed natlés;.
implementation. More formally, Algorithm 2 describes this It is worth noting that this heuristic relies on the fact
behavior in pseudocode (wheabort interrupts execution that synthesizers tend to keep the voting logic close to the
and shows a message to the user). As the analysis baginating FFs, and therefore splitting subgraphs withrgé
to be performed for all: € Vrr, simulation times might be number of inputaisuallydoes not result in voters to be broken.

. . TABLE |

functlon csplit_anal yze(x) RUNTIME COMPARISON BETWEENFT-UNSHADES AND XXX WITH

input anodex € V THRESHOLDS15AND 21
1 split_required «— false; 5
2 foreach child € pre(z) do :eesséfasr? #gaéefs # FgFoS FT'gh Xxi'llr?q Xxi'lzr}q
3 if |pre_ffs(chz:ld)| > THRESHOLD then pci mgas 14379 453 5d 5h <1m 2m
4 replace_i nput (z, child, dummy); pei tar 13768 | 546 | 6d 7h ZIm om
> split_anal yze(child); mctr 35357 | 1251 | 14d 11h m m
6 split_required — true; fou 66967 | 1437 | 16d 15n om 0m
7 | end amod 87193 | 3303 | 38d 5n m 3m
8 end _ iU 147894 | 4224 | 48d 21h 8m | 406m
9 if split_required then pci 190987 | 7974 | 92d 7h 4m 264m
10 (di,...,dr) < get _dummynodes(z) ;
1 foreach c € confi g(di, ...,dx) do 3Gatecount after mapping library to standard logic cells
12 for i —1to k do bnot exhaustive
13 | value(ds)— ci;
14 end
15 anal yze(z);
16 end two steps: first a given Verilog netlist is converted into an
17 else _ intermediate file format, which is then read and analyzed by
ig e|ndanal yze(z); XXX. This separation makes the parser independent from

the main program, allowing easy development of parsers for

Algorithm 3: split_anal yze(x) different input files.
The graph itself was implemented in a custom structure,
using pointers whenever possible and STL [10] maps, vectors
However, it cannot be excluded that some voting logic mighind sort algorithms to maximize speed. In order to be ASIC
be broken, resulting in some rare false positive alerts (skigrary independent, the parser is able to read library def
Section 1V). This will never hide any SEU sensitive partsinitions and design netlists, and to map all custom ASICscell
if TMR is not properly implemented, it will be detected. Into standard gates (AND, OR, ...). If the ASIC library makes
case the algorithm reports a SEU-sensitive FF, testing aithuse of non-standard cells, the parser and XXX can be easily
higher threshold value or manual inspection can identify if enhanced. The tool requires no user input during runtime;, an
represents a false positive. shows status information like the overall progress, whiateg
is being processed etc.
)) The implementation was tested on the submodule netlists
Givenm = [V| andn = |Vpp|, being the total number o 5 radiation hardened LEON2-FT processor [11]. Table |
of gates and FFs, respectively, a naive exhaustive seaggfy s the results of our tests with a threshold of 15 and 21,
would result in2™ poss_|ble FF configurations to test, requiring, 4 compares the runtime with the expected runtime of FT-
O(m2") node evaluations. Unshades [8]. All tests were performed on a 2.66GHz Intel
Determining a subgraph to be analyzed for every nog& e puo workstation. The runtime for the FT-Unshades test
@ € Vrr, givesn subgraphs to verify. Using the propertiegas calculated based on ideal assumptions with a testbench
presented in Section III-C, the algorithm has to check= with 200000 clock cycles and injecting in every possible
[pre_f fs(x)| FFs, with typical designs showing that in genergtr - Assuming 5ms runtime for each test. It is worth noting
ps < n. As described in Section IIl-C, the algorithm limitSy,a¢ this short testbench duration cannot cover all passibl
ps 10 a given threshold by splitting the graph into subgraphs;nemal substates therefore resulting in a non exhaugise
Therefore there are less thah valid configurations we have s testhench that covers all internal substates is hard on eve
to evaluate for every subgraph (assuming FF triplicatioa, Wmossiple to find and the simulation time would be so high to
expect less thaas valid configurations). As we are testingyenger the analysis impractical. As shown, compared wigh th
one bit-flip at a time, we need to performinjections on 1. ynshades toolchain, which introduces a consistenisgee
every valid configuration. Obviously, the number of SUDGIAD it respect to PC based simulators, our approach is several
obtained after splitting and their sizes cannot exceeddt® t ;. jors of magnitude faster.

”“”I‘betf of gagem, rlfs?rl]ting lin Igtsr]s than%2t Lem 32ubgrac§3h Comparing XXX to an exhaustive approach, for example
evaluations. Overall, the algorithm perforni&(nm?) node . for the pci submodule, we have that this module is verified in

evaluations, showing polynomial behavior and outperfagni oo vharg74.2% . 15.1909872 ~ 1.3-10'7 node evaluations
other exponential verification methods. (thresholdt = 15). A naive approach would requir)0987 -
IV. EXPERIMENTAL RESULTS 27974 ~ 4.9 - 10249 evaluations, showing that XXX provides

The algorithm presented in Section 1lI-C was implemente(a’OIerS of magnitude of speedup.

as a C++ program called XXX The graph is obtained in As the actual runtime of XXX depends on the choice of
the threshold presented in Section IlI-D, we tested several

2name omitted for blind review threshold values to determine the speed of the algorithm. In

E. Algorithm complexity analysis

70 T T T T T T 1 16
60 - false positives —5— <1
n runtime ---><-- 1o
£ 50 ,X.----x
3 ; 410
g 40 i P
3 / 18 £
s 30 ,/ 16 5
© L /
H* 20 /I -1 4
g— = —
10 | // 4
o L¥=———oxe---2 i S Sttt X 1 1 L1l o
3 6 9 12 15 18 21 24
threshold
Fig. 2. Runtime and false positive count trend with incnegghreshold
18000
16000 - 116796 before splitting <=1
14000 S after splitting ====1 |
. 12000 - 2 o _
S 10000 - S o i
S 8000 - oop: ~ -
-
6000 - Sk 2 = S o
L < _
o0 [@] 8% B g8 3
B 4 o] OF] E® ®o do Ko

0
10-18 19-36 37-54 55-72 73-96 >96

#of driving FFs per subgraph
Fig. 3. Size classification of subgraphs before and aftettiapl

Q@
©

genera, smaller thresholds result in shorter runtimes thi¢h

Finally, to show its fault detecting capabilities, XXX was
verified on a netlist (moduléw in Table 1) with broken voters.
The netlist used for this test consists of 1408 triplets @422
FFs). For the test run 898 triplets were automatically setbc
and their voters manipulated by changing the voter function
from f(Il,IQ,xg) = (561 A SCQ) \Y (IQ A Ig) \Y (Ig A xl) to
fx1, e, x3) = w1 Vo Vas. This should result im = 898 -3
SEU-sensitive FFs being detected. XXX reported problems in
n = 899-3 FFs: all unprotected triplets plus one false positive.

V. CONCLUSIONS& FUTURE WORK

In this work we presented an algorithm to verify TMR
implementation for given netlists. Performing exhaustieei-
fication without the need of a testbench, this approach does n
suffer under the quality and coverage of the given testbench
as other solutions. First results show that verification of
production-ready netlists can be carried out within fewnsou
To the best of the authors’ knowledge, no other approach
provides this kind of performance.

Future work includes replacing the actual simulation/in-
jection step with the identification of triplets followed by
formal verification of the correct propagation of flip-flop
values through the voting logic. Another technique undedst
is to merge some of the ideas into future hardware-accelkrat
fault injectors. The triplet identification heuristic pesged in
this work, or the graph structural knowledge of independent
subgraphs could be used to allow multiple injections at one
time and thus reducing the test’s runtime.

REFERENCES

drawback of more false positive alerts because of votelts tha

have been broken during subgraph splitting. False pOSitiVél] George C. Messenger and Milton S. Asfhe effects of radiation on

have to be analyzed by manual graph inspection, or Witﬁ]
other means. Figure 2 shows how overall runtime and number
of false positives vary with increasing threshold, for aten
netlists of the LEON2-FT processor, with a total 19218 FF$3
and 570959 gates.

The sum of false positives for all nine given designs goe
from 63 down to 12 The overall runtime goes from 19 minute
up to 13 hours. For a suggested threshold of 15, the runtime
is around 25 minutes. Please note that the runtime strongl§
correlates to the internal structure of the design, esjhetie
subgraph sizes, and therefore it is subject to large fluctst
among the designs.

To show the effectiveness of the subgraph splitting, ther
algorithm was tested on the nine netlists, logging the ciffie
subgraph sizes before and after splitting (with threshbfj=
Figure 3 shows the results of this test. Before splittingréeh
are 1810 subgraphs that consisted6 driving gates. Assum-
ing correct triplication this would result in more that? valid
configurations to be checked for each of those nodes, making
the splitting heuristic an essential component of our agghno
In fact, after splitting the situation is completely diféert: even

4]

(6]

=)

electronic system2nd ed. Van Nostrand Rinhold, 1986.

C. Carmichael, XAPP197: Triple module redundancy design
techniques for Virtex FPGAsXilinx Inc., July 2006. [Online].
Available: http://www.xilinx.com/support/documentatiapplication
notes/xapp216.p%df

Sandi Habinc, “Functional Triple Modular RedundancyGaisler
Research, Tech. Rep., 2002. [Online]. Available: httpiwgaisler.
com/doc/fpga003_01-0-2.pdf

G. Kanawati and J. Abraham, “Ferrari: a flexible softwhssed fault
and error injection systemComputers, IEEE Transactions ovol. 44,
pp. 248-260, 1995.

J. Bou, P. Ptillon, and Y. Crouzet, “Mefisto-I: A vhdl-ted fault
injection tool for the experimental assessment of fautrenice.” |IEEE
Computer Society, 1998, p. 168.

J. A. Maestro,SST 2.0: User ManualJniversidad Antonio de Nebrija,
November 2006. [Online]. Available: http://www.nebrga/~ jmaestro/
esa/docs/SST-UserManual2-0.pdf

K. K. Goswami, R. K. lyer, and L. Young, “Depend: A simulat-based
environment for system level dependability analysiEEE Transactions
on Computersvol. 46, no. 1, pp. 60-74, 1997.

M. Aguirre, J.N. Tombs, V. Baena-Lecuyer, F. Mufioz, Aorfalba,
A. Fernandez-Leon, and F. Tortosa-Lopez, “FT-UNSHADBSnew
System for Seu Injection, analysis and diagnostics ovet gpgsthesis
netlist,” MAPLD’2005, Nasa Military and Aerospace Programmable
Logic Devices Sep. 2005.

S. A. Seshia, W. Li, and S. Mitra, “Verification-guided fscerror
resilience,” inProc. Design Automation and Test in Europe (DATE)
April 2007.

[10] Standard Template LibrarySGI. [Online]. Available: http://www.sgi.

though the splitting results in many more subgraphs to be” com/tech/stl
checked, the subgraph sizes are much smaller. There arellAbJ. Gaisler, “The LEON2 IEEE-1754 (SPARC V8) ProcessGaisler

subgraphs with more than 54 driving gates, giving no more
than 2'® valid configurations

Research, 2003. [Online]. Available: http://www.gaistem

