\K\\k\k\
€-esa pocumEnT

ESINEOHINIUIUECSE BRI

document title/ titre du document

SINGLE EVENT UPSETS
SIMULATION ToolL
FUNCTIONAL DESCRIPTION

prepared by/préparé par Daniel Gonzalez Gutiérrez
reference/réference TEC-EDM/DGG-SST2
issue/édition 1

revision/révision 2

date of issue/date d'édition 26/07/04

status/état Draft

Document type/fype de document ~ Functional Description
Distribution/distribution

Evropean Space Agency
Agence spatiale européenne

SST- Functional Description.doc

Single Event Upsets Simulation Tool Functional Description

issue 1 revision 2 - 26/07/04
TEC-EDM,/DGG-SST2
page i of iv

APPROVAL

Title issue 1 [revision 2

fitre issue revision

author date 26/07/04

auteur date

approved by date

approuvé by date
CHANGE LOG

reason for change /raison du changement issue/issue revision/revision date/date

This file is based on the former User manual of 1 2 26/07/04

revision 1.1 renamed to Functional Description.
Changes from 1.1 to 1.2 are added here and a new
User manual is issued.

CHANGE RECORD

Issue: 1 Revision: 2

reason for change/raison du changement

page(s)/page(s)

paragraph(s)/paragraph(s)

e s a Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM,/DGG-SST2
page iii of iv

TABLE OF CONTENTS

1 SCOPE 1

2 TERMS AND ACRONYMScciiiiiiiiiiienssssssrssrsnnssssssss s s s s s s s nnssssssssssssssssnnsssssssssssssnsnnnnnnsssnns 1
3 APPLICABLE DOCUMENTScoiiiiiiiiiimiessesssssssesssssssssssssssssssssssssssssssssssssssnnsnsssnsssnnnsnnssnnnnnnns 1
L S | I 0 10 10 L 0 I 0 1
5 FUNCTIONAL OVERVIEWoooiiiiiiiiimieieiessessssssssssssssssssssss s s s ssssssssssss s s s s s s s s s s s s s nnnnnnnnnnnnnnnnnnns 1
5.1 RUNNING STEPS ..ttt ettt et e at e et e e bt e e bt e beesabe e bt e sabeeseesnbeenseesnseenseennnas 2
5.2 INernal STIUCLUTE......oouuiiiiiiiiiiiee ettt ettt e et e sae e e beenaee e 3
5.2.1 Interdependency tableoouiiiiiiiii e e 3
52.2 BIOCK QIAGIAIMcoviiiiiiieiiieiiccie ettt ettt et e et e e st eesbeestaeesbeensaeenseesnbeenseennnas 4

53 SST SCIIPLS AESCTIPLION. .. .eeetitiiitiritirtieteeiteett ettt ettt ettt et ettt et sbe et eatesbeebesaeesaeenneas 5
5.3.1 NN 48 o] SRR 5
5.3.1.1 “Actions’ MENU DULOMcoetiiiiiiiiieiiietce ettt ettt et e et esete et e enbeeseeas 5
5.3.1.1.1 Gather design INFOIrMAtIONcceeeviieriieiiieiieeiieete ettt ere e e ereesieeebeessaeereessseennas 6

5.3.1.1.2 GENETALE UPSELS ...eveniiiiiieiieiieeiee ettt ettt ettt ettt e sae e st e e b e s st e b saneenneenenes 6

5.3.1.1.3 Run a simulation introducing the UPSetSccceevuieriieiiieniieiiieiie et eve e 7

5.3.1.2 “Configuration” Mmenu DULTONoouiiiiiiiiiiiiieiciieeeeet ettt 7

5.3.1.3 “Help’ MENU DULONoooiiieiiiiiiie ettt et ettt et e s e et e e sabeesbeessbeeseesnseenseensnas 7

532 SST SATTUP.ECL. ..ottt ettt sttt 7
533 SST LSt INSTANCES. Pl ..ueiieiiiiiiieiieie ettt ettt ettt e et eseaeebeessbeebeeesseenseessseensaeesseenns 8
5.3.3.1 all instances.dat fOrmatccooiiiiiiiiiiie et 9

534 SST WITES PATSET.PL.ueiieiiiiiiieiieiie ettt ettt et e ettt e et e e teessaeebeessseesseessseesseessseenseensseenns 9
5341 WIre files fOrmatooviiuiiiiieiieee ettt st st 10

5.3.5 SST UPSEt ZENETALOT. Pl ...eviiiiieiiieeiiieieeeie ettt ettt e sbeesbeeesbeeseesnbaesseeenseensnas 10
5.3.5.1 Options and SWITCHEScoiiiiiiiiiiiiii ettt 11
5.3.5.1.1 Manual OPHION (-101) ...ceeeuvieeriiieeriieeeiieeestee et e et e e et e e ebeeeebeeesibeeesaseeesnseesnseesnneesnseeennns 11

5.3.5.1.2 INStANCES OPLION (F1) .vereruriieiiieeiieeeiiiieeiteeeeiteeesteeesteeessbeeesereeessseeesseeeseeessseessesensseeennns 12

5.3.5.1.3 NUMDET OPLION (711) c.evieriieiiieiiiieieeeieeieesie et e eite et e saeeteeseaeesbeessseeseessseesseessseeseessseenns 13

5.3.5.1.4 TIME OPLION (71) uveiieiieiiiiieeiieeeeeee ettt ee e e et e e et e e e teeeeabeeesaaeeesaseeeaseeessseessseesnsaeesssesennns 14

5.3.5.1.5 Help Option (<) .ecueieiiiiicieeie et e 15

53.6 NI 1 TSRS RRRURRSTSR 15
53.7 SST DIt AP Pl sttt et b ettt nae et nnea 16
5.3.8 SST CONTIZACL .ttt ettt sae st 16

539 SST Perl PaACKAZE.PIM ...ooviieiiieiieeieeee ettt ettt et sbe et eeebeessaesasaesseensnas 16

@ e s a Single Event Upsets Simulation Tool Functional Description

issue 1 revision 2 - 26/07/04
TEC-EDM,/DGG-SST2
page iv of iv

6 SST DIRECTORY STRUCTURE
6.1 Files supplied DY the USET......ccuiiiiiiiieiie ettt ettt ettt et e enee 16
6.2 Files generated by the tool

7 TEST EXAMPLE

e s a Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM,/DGG-SST2
page 1 of 18

1 SCOPE

The object of this document is to describe what the Single Event Upsets Simulation Tool is able to
do, and how this is achieved.

2 TERMS AND ACRONYMS

DUT Design Under Test

GUI Graphical User Interface

HDL Hardware Description Language
SEU Single Event Upset

SST Single Event Upsets Simulation Tool

3 APPLICABLE DOCUMENTS

The table 3.1 shows the documents referred in this document.

[ModelCRef] Modelsim Command Reference.
[SSTUsrMan] | SST User Manual

Table 3.1 Applicable documents

4 INTRODUCTION

Single Event Effects and in particular Single Event Upsets are of major concern when dealing with
electronic designs that will suffer the consequences of a radiation environment. The sooner we
know the effects of SEUs on a particular design, the better. This is the main reason for the
development of this tool: to be able to emulate SEUs, easily and in a useful controlled manner,
while still in the simulation (HDL) stages of the IC design flow.

One of the main concerns about introducing SEUs in HDL simulations, is to be able to do it with
independence of the particular design and in a non-intrusive way. The use of Per/ as the main
programming language of the tool, and 7cl/tk to interact with the simulator, made this possible. On
the other hand, the fact that the bit-flips were to be done while a design was being simulated,
created a dependency with the simulation tool (Modelsim).

5 FUNCTIONAL OVERVIEW

The SEUs Simulation Tool consists of a set of Per/ and Tc/ scripts used to prepare the environment
to be able to upset (bit flip) in a controlled and effective manner, any register or internal signal of
the design under test, while a simulation is running. The tool allows several degrees of freedom for
the user to decide, which signals and when during the simulation the SEUs will be emulated. A test

e s a Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM,/DGG-SST2
page 2 of 18

bench for the DUT is needed in order to detect if the upsets modify in any way the behavior of the
design.

In order to provide the user with an easy to use environment, a Graphical User Interface has been
developed in Tcl/tk to invoke the scripts (see figure 5.1). The user will always be able to call the
Tcl and Perl scripts directly from the simulator or from a command line interface without using the
GUI, if running the tool in command line mode is preferred.

f single Event Upsets Simulation T _ 0] x|

Actions Configuration Help

Figure 5.1 SST Graphical User
Interface main window

5.1 Running steps

Either if the GUI is being used or the command line mode has been chosen, the use of the tool
requires the following four sequential steps (see [SSTUsrMan] for a detailed description of them):

- Load the Test Bench of the DUT in the simulator.

- Gather information about the design.

- Select the wires that are going to be upset and when.
- Run a simulation introducing the upsets.

Eesa

Single Event Upsets Simulation Tool

Functional Description
issue 1 revision 2 - 26/07/04

TECG-EDM/DGG-S5T2
page 3 of 18
5.2 Internal Structure
5.2.1 INTERDEPENDENCY TABLE
A table describing the dependencies of the SST scripts can be found hereafter:
Is called Calls Input Output files
GUI mode command line mode files/parameters
SST_gui.tel From a - SST_startup.tcl Configuration SST perl_package.pm
Modelsim SST_config.tcl parameters hierarchy.dat
window SST upset _generator.pl have to be set all_instances.dat
sst.do up in: Wire files
SST config.tcl all_wires_parser.log
sst.do
SST_startup.tcl Actions/ Gather From a Modelsim SST config.tcl No input files. hierarchy.dat
design window. SST list_instances.pl Configuration * sig files
information SST wires_parser.pl parameters SST perl package.pm
have to be set
up in:
SST config.tcl
SST_config.tcl Automatically called by SST startup.tcl - Configuration SST perl package.pm
parameters

SST_list_instances
.pl
SST_wires_parser
.pl

SST upset_genera
tor.pl

sst.do

SST_bit_flip.pl

SST_perl_package
.pm

Automatically called by SST_startup.tcl
Automatically called by SST_startup.tcl
From a command

line interface or a
Modelsim window.

Actions/
Generate Upsets

From a Modelsim
window

Actions/ Run a
simulation
introducing the
upsets

Automatically called by sst.do

Automatically called by:
SST list instances.pl
SST wires_parser.pl
SST upset_generator.pl

SST perl package.pm

SST perl package.pm

SST perl package.pm

SST bit_flip.pl

Table 5.1 Scripts interdependency

have to be set
up in this script
hierarchy.dat

all instances.dat
* sig files

all_instances.dat
Wire files
Command
line/GUI
options and
switches

It requires a test
bench for the
DUT.

The value of the
signal to be
upset

all_instances.dat

all_instances.dat
Wire files
all wires_parser.log

sst.do

e s a Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM,/DGG-SST2

page 4 of 18

5.2.2 BLOCK DIAGRAM

A block diagram of the scripts involved in the tool can be found in the following figures:

SST_gui.tcl

v

SST_startup.tcl

SST_upset_generator.tcl

sst.do

Figure 5.2 SST_gui.tcl block diagram

SST_startup.tcl

SST _list_design_instances.pl SST_wires_parser.pl

hierarchy.dat - i
all_instances.dat ;::> Wire files

{}

SST | SST_perl_package.pm

MASK

Figure 5.3 SST startup.tcl block diagram

e s a Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM,/DGG-SST2
page 5 of 18

Command line

interface / GUI
options

SST_startup.tcl
SST_upset_generator.pl

Wire files
sst.do
all_instances.dat :::> sst.do ;::> |

SST perl packa
ge.pm

Figure 5.4 Interactions between SST_startup.tcl,
SST_upset_generator.pl and sst.do.

SST_bit_flip.pl ||

5.3 SST scripts description

53.1 SST GULTCL

The Graphical User Interface is written in 7c//tk and consists of a menu bar and an interface
window. The steps required to run the tool can be easily followed by simply clicking in the menu
buttons and by filling the entry widgets that will appear in the interface window.

5.3.1.1 ‘Actions’ menu button

The actions menu button has three different options as can be seen in figure 5.5. Each of these
options invokes a different 7c/ or Per/ script, which performs the action stated by its option label.

e s a Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM,/DGG-SST2
page 6 of 18

 Single Event Upsets Simul

Actionz Configuration Help

Gather design information
Generate upsets
Run a simulation introducing the upsets

Figure 5.5 SST GUI ‘Actions’
menu button.

5.3.1.1.1 Gather design information

This option executes the script SST startup.tcl after reminding the user that a design needs to be
loaded.

5.3.1.1.2 Generate upsets

This option executes the script SST upset generator.pl after the user has filled the entry boxes and
check buttons of the interface window (see figure 5.6).

 single Event Upsets Simulation’ i]

Actionz Configuration Help

danual Option

I Set manual option

Instances Dption
I~ Read all_instances.dat

Murnber: I
Filter patterm: I

Mumber Option
I Mat fised switch

Murnber: I
Filter patterm: I

Time Option

Start time: ID Time Linit I ng
‘window length: ID Wwindow unit; I ng

Continue | Reset |

Figure 5.6 SST GUI, ‘Generate
upsets’.

e s a Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM,/DGG-SST2
page 7 of 18

5.3.1.1.3 Run a simulation introducing the upsets

This option executes the script sst.do (generated by SST upset generator.pl), which runs a
simulation introducing the desired upsets.

5.3.1.2 ‘Configuration’ menu button
The configuration menu button opens the file SST config.tcl for editing.

5.3.1.3 ‘Help’ menu button
The help menu button contains links to PDF versions of both this document and [SSTUsrMan].

53.2 SST STARTUP.TCL

This script is written in 7c/ and consists of a set of simulator commands and two Per/ script calls.
It can be seen as a simulator macro as a whole, which is used to set up the environment for another
script: SST upset generator.pl

In order to upset the value of any wire of a particular design, it is necessary to know the exact
location of it, which implies that the hierarchy and the structure of the DUT has been completely
analysed and understood. On one hand we need to know the number of modules and the way they
are instantiated. On the other hand, we need to specify the type of wire we are interested in
(internal signal, input or output of any sub-module, etc) and find out how many wires of this type
can be found in every module.

The hierarchy of the DUT (the number of modules and how they are instantiated) is saved into the
file hierarchy.dat by SST startup.tcl, using the commands reproduced in figure 5.7.

view structure
.structure.tree expandall -1
.structure.tree write ./SST/control files/hierarchy.dat

Figure 5.7 Saving the hierarchy of the DUT

However, if that structure file is to be used by the tool, we need to give it a more useful format.
This is the task performed by the Perl script SST list_instances.pl, called from SST startup.tcl

The selection of the type of wire we want to focus in, has to be done by directly editing the
wire_mask configuration parameter in SST config.tcl.

The names of the wires that belong to a particular instance can be saved into a file, which name
will be the instance name (unless several instances have the same name, in that case a number is
appended at the end) and which extension will be .sig, using a command similar to the one used to
save the hierarchy of the DUT, as can be seen in figure 5.8.

e s a Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM,/DGG-SST2
page 8 of 18

view signals
.signals.tree write instancename.sig

Figure 5.8 Saving the wires that belong to a
particular module of the DUT

To collect this information from all the modules instantiated in the DUT, a loop through the whole
hierarchy has to be performed. As it happened with hierarchy.dat, the *.sig files will need to be
reformatted by another script (SST wires parser.pl) in order to be used by the SST afterwards.
These newly formatted files will be stored in: ./SST/wire_files and will have the extension hold in
the SST config.tcl variable ‘$wire files ext’

In order for the Perl/ files to use the configuration parameters defined in SST config.tcl, the script
SST startup.tcl creates a Perl package called SST perl package.pm in SST/control files. This
package contains a copy of those parameters that will be used by Per/ scripts.

5.3.3 SST LIST INSTANCES.PL

This Perl script is called from SST startup.tcl. Its basic function is to reformat the file
hierarchy.dat into all_instances.dat. It also checks the names of all the instances, so the files that
will be generated by the script SST wires_parser.pl (which are named after every single instance),
could have names that do not conflict with each other or with the tool itself.

Samples of hierarchy.dat and all instances.dat can be found in figures 5.9 and 5.10.

tb top: tb top(behaviour)
tbinterfacei: interface (beh)
txfifo: fifo (beh)
rxfifo: fifo (beh)
txi: tx(beh)
rxi: rx(beh)
statemachinei: statemachine (beh)
link: link wrap(rtl)
1i 1: link interface(structural)
clklOgen 1: clklOgen(rtl)
state machine 1: state machine(rtl)
state counter 1:
state counter(rtl)
receiver 1: receiver (structural)
rxcontrol: rx control(rtl)
transmitter 1: transmitter (structural)
txctrl: tx controller(rtl)
txfifo: generic fifo (behav)
rxfifo: generic fifo (behav)
common ctrlli: common ctrl (behaviour)
Package std_logic textio -

Figure 5.9 hierarchy.dat file

e s a Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM,/DGG-SST2
page 9 of 18

5.3.

3.1 all instances.dat format

The file contains 4 columns:

Force: this column is used to state whether the instance has been selected or not to have its
wires upset (‘No’ is the default value written in this column when the file is created).

File name: The file name is based on the instance name. If several instances have the same
name, an ‘-n#’ will be appended at the end of the file name, from the second occurrence on,
where # holds the number of repetitions. If an instance name has any of the following
characters: V:*?"<>|, they will be replaced by '-' when giving a name for its corresponding file
(the instance full path column will keep the original characters).

of wires: the number of wires of the type selected in SST startup.tcl that can be found in
each instance. This field is filled by the script SST wires_parser.pl since SST list instances.pl
has no information about the contents of each instance (‘unknown’ is the default value written
in this column when the file is created).

- Instance full path.
Force File Name # wires Instance full path
No tb top unknown /tb top
No tbinterfacei unknown /tb top/tbinterfacei
No txfifo unknown /tb_top/tbinterfacei/txfifo
No rxfifo unknown /tb top/tbinterfacei/rxfifo
No txi unknown /tb_top/tbinterfacei/txi
No rxi unknown /tb_top/tbinterfacei/rxi
No statemachinei unknown /tb_top/tbinterfacei/statemachinei
No link unknown /tb_top/link
No 1i 1 unknown /tb top/link/1i 1
No clklOgen 1 unknown /tb top/link/1i 1/clklOgen 1
No state _machine_ 1 unknown /tb_top/link/1i 1/state _machine 1
No state counter 1 unknown /tb top/link/1li 1/state machine 1/state counter 1
No receiver 1 unknown /tb_top/link/1i_1/receiver 1
No rxcontrol unknown /tb top/link/1li 1/receiver 1/rxcontrol
No transmitter 1 unknown /tb_top/link/1i 1/transmitter 1
No txetrl unknown /tb_top/link/1i_1/transmitter_ 1/txctrl
No txfifo-nl unknown /tb top/link/txfifo
No rxfifo-nl unknown /tb_top/link/rxfifo
No common ctrlli unknown /tb_top/common ctrlli

Figure 5.10 all_instances.dat

5.3.

Reformatted version of hierarchy.dat generated
by the script SST_list_instances.pl

4 SST WIRES PARSER.PL

This Perl script is also called from SST startup.tcl. It has two separate tasks, the first one is to give
a useful list of the wires that can be found in every instance, and the second one is to update the
contents of the file all instances.dat, by setting the number of wires every instance has, and by
removing from it all those instances that have no wires from the type selected in SST config.tcl
(these removed instances will be logged together with a warning message to all wires parser.log)

e s a Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM,/DGG-SST2
page 10 of 18

As it was stated before, for every single instance found in the DUT, the script SST startup.tcl
generates a .sig file. These *.sig files contain all the relevant information of the wires that can be
found in each instance, however their format is not very user friendly. The SST wires parser.pl
script gives the *.sig files a handier format as can be seen in figure 5.11 B. The extension name for
these reformatted files can be set up in SST config.tcl as desired. They will inherit the file name
from the .sig file they come from (which is set in SST list instances.pl), and they will be referred
as wire files throughout this document.

clk = U Force Name @Time
rst = U
rx_data = XXXXXXXXX No clk Ons
(8) = U No rst Ons
(7) = U No rx data Ons
(6) = U No rx write Ons
(5) = U
(4) = U
(3) =0
(2) = U
(1) = U
(0) = U
rx write = U
A B

Figure 5.11 Internal signals of a particular instance.
A. *.sig file
B. Wire file

5.3.4.1 Wire files format

Each file contains 3 columns:

- Force: this column is used to state whether the wire has been selected or not to be upset (‘No’
is the default value written in this column when the file is created).

- Name.

- (@Time: The scheduled time when the wire is going to be upset (‘Ons’ is the default value).

5.3.5 SST UPSET GENERATOR.PL

This Perl script is the core of the SEUs Simulation Tool since the selection of what wires are to be
upset and when this will happen is done here. The basic idea taken into account while developing
this script was to give the user a great flexibility when controlling where and when the upsets can
be simulated, so a wide range of tests could be run on the DUT.

Before running SST upset generator.pl, it is mandatory to have executed the macro
SST startup.tcl once (or its equivalent GUI option). The files created by the calls to Per/ scripts
found in this macro are necessary for SST upset generator.pl to run properly.

The following points have to be considered:
- Number of wires: How many do we want to upset?

e s a Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM,/DGG-SST2
page 11 of 18

- Location of the wires: Is there a particular place (instance, group of wires, etc) on our
design that we want to test?

- Time when the upsets have to be done: At what point of the simulation do we want to upset
the wires?

- Names of the wires: Is there a particular pattern of characters that we can use to select the
wires to be upset?

The selection of wires and the time of the upset is done via some command line interface options
and switches, if the command line mode is used, or by filling the entry boxes and check buttons of
the interface window, if we are running the GUI. Once these input parameters are interpreted, the
script SST upset generator.pl generates a simulator macro, sst.do, which will be used to run a
simulation and upset the selected wires at the times specified.

5.3.5.1 Options and switches

5.3.5.1.1 Manual option (-m)

Both all instances.dat and the wire files have to be edited manually by the user of the script, in
order to select the desired wires and the upset times. The way to select a particular instance in
all _instances.dat is by writing a ‘Yes’ in the Force column. The way to select a wire of an instance
is by writing a ‘Yes’ in the Force column and a time value on the @time column of the
corresponding wire file.

This option excludes the rest of the command line interface options.

i Single Event Upsets Simul

Actions Configuration Help .

g Manual Option

[v Set manual option

Inztances Option |

[~ Read all_instances dat

. Murnber; I

! Filter patterr: I

e e ey
| Mumber Opticn

E I Mot fived sitch

: Mumber: I

I

| Filter pattetr: I

Time Dption

I Shart tire: IU Time LIt i i
i WWindow length: I?J “windaow unit: i ng
L L3
Cantinus | Reset |

Figure 5.12 Example of use of the ‘manual’ option
of the script SST upset generator.pl.

A. Command line mode.

B. GUI mode.

e s a Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM,/DGG-SST2
page 12 of 18

5.3.5.1.2 Instances option (-i)

This option is used to specify in what instances, from the ones that can be found in
all _instances.dat, we want to induce the upsets. It has 3 switches (optional characters or fields are
written inside brackets):

- r(ead): the user has selected the instances by editing all instances.dat. The script will just
read this file in. Note that this option is not similar to “- m” since that manual option
implies that both all_instances.dat and the wire files have been edited.

- f(ilter): the selection of instances will be done by filtering their names using patterns
introduced via the command line interface. The patterns should be Perl like regular
expressions.

Valid input format for the command line mode: -i()filter (#) patternl (pattern2) (pattern3)
Where # is the number of filtered instances to be randomly selected. If this number is not
specified, all the filtered instances will be selected.

- Number: a number specifies the amount of instances that will be randomly selected.

' single Event Upsets Simulati

Actions Configuration Help

anual O ption

| T Set manual option

[” Read all_instances. dat

Mumber: |3
Filter pattern: I_reg$

| Murber Option
: ™ Mot fived switch

MNumber: I
' Filter pattern: I

i Time Option
Start tirne; !D Tirne Lt i ns
- Window length; ID Windaw unit; I fs
Cortinue | Resat | ‘

Figure 5.13 Example of use of the ‘instances’ option of the
script SST upset _generator.pl
Amongst all the instances whose names end with _reg’,
three of them will be randomly selected. The ‘$’character is
used by Perl and Tcl to anchor the search to the end of a
string. If we want to search for the occurrence of a ‘$’ in
any instance, \$’ should be written instead.

A. Command line mode.
B. GUI mode.

e s a Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM,/DGG-SST2
page 13 of 18

5.35.1.3 Number option (-n)

This option is used to set which wires will be upset. It has 3 switches (optional characters or fields
are written inside brackets):

- n(ot_fixed): the number of wires is calculated using the parameter weight in, which is
defined in SST config.tcl. This parameter represents the percentage of the wires that will be
upset in each selected instance.

- f(ilter): the selection of wires will be done by filtering their names using patterns
introduced via the command line interface. The patterns should be Per/ like regular
expressions.

Valid input format for the command line mode: -i()filter (#) patternl (pattern2) (pattern3)
Where # is the number of filtered wires to be selected. If this number is not specified, all
the filtered wires will be selected.

- Number: a number specifies the amount of wires that will be randomly selected.

B { single Event Upsets Simulat_iori]

Actionz Configuration

! ahual Option

| [Set marual option

Instances Option
¥ Read all_instances. dat

Mumber: I
Filter pattem: I

| Mumber 0 ption
™ Mot fized switch

| Mumber: I__

| Filter pattern: IqD

Time Option

Start time: IU Time it I nis
Wwindaw length: ID “indow unit: I ns i
Contiriue | Rezet |

Figure 5.14 Example of use of the ‘number’ option of the
script SST_upset_generator.pl
All the wires (of the instances set to ‘Yes’ in
all _instances.dat) whose names contain the pattern ‘q0’ will
be the ones selected.

A. Command line mode.
B. GUI mode.

e s a Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM,/DGG-SST2
page 14 of 18

5.3.5.14 Time option (-t)

This option is used to determine in which time window (within the test bench simulation limits) the
upsets will be emulated. Given a starting time value (0 by default) and a time window, the script
will randomly set a time value between the limits specified, for each signal to be upset.
Valid input formats for the command line mode (parenthesis can be omitted):

- -twindow length time unit.

- -t (starting_value window_length) time unit.

- -t (starting value time unit window_length time unit).

Note that the time window has to be selected between the simulation limits, therefore the
simulation length has to be known a priori.

f single Event Upsets Simul

Actions Configuration Help .
|

—
| Mahual Option
| I Set manuial option

Inztances Option
: ¥ Read all_instances. dat

| Mumber: i I
i Filter patterr: I

Mumber Option

[Mot fixed switch
' MHurmnber: EZ
Filter pattern: I

| Time Option

Start tirne: |1 Time Lnit I ms I
| I
| I
| Windaw length: |1DD Window unit: I ng I
| I

AR o o Al sV e e T H LA

|
|

|

Cantinue | Reset | [

Figure 5.15 Example of use of the ‘time’ option of the script
SST upset generator.pl
Two wires (of the instances set to ‘Yes’ in
all instances.dat) will be randomly selected to be upset, at
random time values between 1ms and 1.0001ms.

A. Command line mode.
B. GUI mode.

e s a Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM,/DGG-SST2
page 15 of 18

5.35.1.5 Help option (-h)

This option displays a help message with information about the use of the script and some
examples.

53.6 SST.DO

This script is written in 7c¢/ and consists of a set of simulator commands and a Per/ function call,
which will automatically run a simulation introducing the upsets. The script
SST upset generator.pl generates it automatically.

The way sst.do proceeds is as follows (see figure 5.16 for a detailed example):
- The simulation is run up to the first scheduled upset.
- The value of the wire is checked.
- If that value is not undefined, it is upset using the Per! script SST bit flip.pl and the
Modelsim command force —deposit.
- The simulation is run up to when the next upset is scheduled.
- The value of the wire is checked and upset...
- When the last upset is done, wait until the simulation ends.

#Macro generated by SST upset generator.pl

run 262285 ns
define signal path
set wire /tb_top/tbinterfacei/txfifo/data_out
examine current value
set wire checked val [exa Swire]
flip one bit of the wire
set wire upset val [exec perl -S SST bit flip.pl
Swire checked val]
if {Swire upset val != "undefined"} ({
echo Forcing Swire to Swire upset val @ 262285ns
force -deposit $wire Swire upset val
} else {
echo Unable to upset $wire. Undef value.

}

run 10 ns
define signal path
set wire /tb_top/link/1li_1/state _machine 1/cntrl
examine current value
set wire checked val [exa Swire]
flip one bit of the wire
set wire upset val [exec perl -S SST bit flip.pl
Swire checked vall]
if {Swire upset val != "undefined"} ({
echo Forcing Swire to Swire upset val @ 262295ns
force -deposit S$wire Swire upset val
} else {
echo Unable to upset $wire. Undef value.
}

run -all

Figure 5.16 Source code of an sst.do file

e s a Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM,/DGG-SST2
page 16 of 18

5.3.7 SST BIT FLIP.PL

This small Perl script is used to change the value of a wire and emulate the occurrence of a Single
Event Upset. If the width of the wire is one bit, it negates it. On the other hand, if the width of the
wire is greater than one, it changes the value of one of its bits; the selection of the bit that is going
to be upset, in this case, is done in a random manner.

53.8 SST CONFIG.TCL

This file contains global variable definitions for parameters used in different scripts of the tool.
The parameters that have to be used by Perl scripts will be copied to the package
SST perl _package.pm

The values of some of these configuration parameters can be changed for advance users to fine
tune the SEUs Simulation Tool. Other configuration parameters such as wire mask and
wire_files ext should be checked every time the initialization phase is run, to make sure that the
information gathered is the one we are interested in.

Please refer to the source code of this file to know more about each configuration parameter.

53.9 SST PERL PACKAGE.PM

This Perl package contains a copy of those configuration parameters set in SS7°_config.tcl, which
have to be used in Perl scripts.

6 SST DIRECTORY STRUCTURE

6.1 Files supplied by the user

-
HDL testbench _files

6.2 Files generated by the tool

- ./SST/control_files

all _instances.dat, all wires parser.log, hierarchy.dat,sst.do, SST perl package.pm
- .JSST/wire _files

In this folder we can find all the wire files.

e s a Single Event Upsets Simulation Tool Functional Description
issue 1 revision 2 - 26/07/04

TEC-EDM,/DGG-SST2
page 17 of 18

7 TEST EXAMPLE

Assuming that the tool is run together with a self-checking test bench for the DUT, a wide range of
SEUs tests can be created. The 7c/ macro of figure 7.1, which is described hereafter, shows an
example of what can be done with the SST.

FHEH A A R R R
Before running this script we need to:

* Load the design and run SST startup.tcl

* Set the variable number of ff to the total number of ff we would like to upset (one

at a time)

FHA A R R

1 set number of ff 20;

2 for {set i 0} { $i<= Snumber of ff} {incr i} {

3 # execute the script SST upset generator

4 # select a particular flip flop in -i

5 exec perl -S SST upset generator.pl -ifilter ctm/reg $i/ff\$ -nfilter 1 gO0\$ -t
247us 15us

6 echo ### Upsetting: /ctm testbench/ctm0/ctm/structuralgen/sequentialgen S$i/ff/f

7 # run the modelsim macro created by that script

8 do ./SST/control files/sst.do;

9 # Check status

10 view variables;

11 set status_index [.variables.tree find Status];

12 set status [.variables.tree get2 $status index];

13 destroy .variables;

14 set keep running [regexp {true} S$status];

15 if {$keep running} {

16 restart -f;

17 destroy .source;

18 } else {

19 break;

20 }

21 }

Figure 7.1 Test example coded in 7¢/ as a simulator macro.

In this test the same simulation is run continuously, upsetting a different (and only one) flip-flop in
each iteration. If the simulation fails, the loop is interrupted.

The variable $number of ff holds the number of flip-flops we would like to upset. As only one
flip-flop is being upset each time the simulation is run, this variable also holds the total number of
times we run the simulation (line 2).

The flip-flops are the instances of our design whose names end with ‘reg #/ff* (where # is an
integer number) therefore we could use the filter switch of the —i option of the script
SST upset generator.pl (line 5), to select a particular flip-flop (the loop variable i’ is used as part
of the search pattern since it holds an integer number). The outputs of the flip-flops can be selected
by using ‘q0’ as a filter pattern for the —n option of the SST upset generator.pl script.

Its basic operation per iteration is as follows:
- Execute SST upset generator.pl filtering the output of a particular flip-flop.

@ e s a Single Event Upsets Simulation Tool Functional Description

issue 1 revision 2 - 26/07/04
TEC-EDM,/DGG-SST2
page 18 of 18

- Execute sst.do, which will run the simulation (line 8).
- Continue with a new iteration if the test bench passed, and stop otherwise (line 15)

Note that the character ‘$’ (used by Per/ to anchor the search to the end of a string) is being
preceded by a backslash (line 5) to avoid naming conflicts since 7c/ also uses the dollar sing to
name its local variables ($Snumber of ff, i, $keep running...).

	SCOPE
	TERMS AND ACRONYMS
	APPLICABLE DOCUMENTS
	INTRODUCTION
	FUNCTIONAL OVERVIEW
	Running steps
	Internal Structure
	INTERDEPENDENCY TABLE
	BLOCK DIAGRAM

	SST scripts description
	SST_GUI.TCL
	‘Actions’ menu button
	Gather design information
	Generate upsets
	Run a simulation introducing the upsets

	‘Configuration’ menu button
	‘Help’ menu button

	SST_STARTUP.TCL
	SST_LIST_INSTANCES.PL
	all_instances.dat format

	SST_WIRES_PARSER.PL
	Wire files format

	SST_UPSET_GENERATOR.PL
	Options and switches
	Manual option (-m)
	Instances option (-i)
	Number option (-n)
	Time option (-t)
	Help option (-h)

	SST.DO
	SST_BIT_FLIP.PL
	SST_CONFIG.TCL
	SST_PERL_PACKAGE.PM

	SST DIRECTORY STRUCTURE
	Files supplied by the user
	Files generated by the tool

	TEST EXAMPLE

