
EUROPEAN SPACE AGENCY

MICROELECTRONICS SECTION

Final Report

YGT Final Report
Atmel FPGA

Filomena Decuzzi

YEAR 2009-2010

Summary

Field Programmable Gate Arrays (FPGAs) are becoming more and more interest-
ing in space and avionic applications, where reconfigurability, high performance and
low-power consumption can be fruitfully used to develop innovative systems. FP-
GAs have the capability of being reconfigured several times.
The high flexibility combined with high performance makes the FPGA a valid solu-
tion for several applications. However, missions take place in a harsh environment,
rich in radiation, which can induce errors within electronic devices. The radiation
may interact with silicon devices and induce Single Event Effects (SEEs), like Sin-
gle Event Upset (SEUs) and Single Event Transients (SETs) in the configuration
memory and user memory.
The effects of the SEEs depended on the technology used. Nowadays, re-programmable
FPGAs can be SRAM-based FPGAs, when the information defining the configura-
tion of the device (i.e. the configuration memory) is stored using SRAM memory
cells, or Flash-based FPGAs, when the configuration memory is implemented re-
sorting to floating-gate memory cells. The SRAM is the technology used for imple-
menting volatile configuration memory. Such memories - in the commercial field -
are sensitive to SEU (SEUs) induced by radiation. In SRAM-based FPGAs both
the configuration and the user memory are sensitive to SEUs.
Since space applications have to survive to environments rich in radiations, silicon
vendors proposed different solutions. Actel adopted floating gate cell based on a
130nm process that radiation testing has showed to be insensitive to heavy ions [1].
Xilinx adopt Commercial-Of -The-Shelf (COTS) devices with proper SEE mitigation
techniques as redundancy and memory scrubbing [2]. Atmel developed Radiation
Hardened By Design (RHBD) configuration memory cells and flip-flop that are less
sensitive to ionizing radiation.
The Atmel FPGA have been studied, for the whole project, in different aspects.
As far as RHBD Atmel devices are considered, although robust against SEEs, they
still have a not null cross-section. In order to use them successfully in safety-critical
application, designers must guarantee that the obtained system satisfies the de-
pendability level requested for their application. As a matter of fact, designs make

1

seldom use of the whole configuration memory bits; only a portion of the config-
uration memory is used to program the device. As result, in order to predict the
robustness of FPGA, a design-based analysis is desirable.

The results of this design depended analysis shows how the reliability of a design
depend on :

• design description;

• design implementation.

The design description depends on the designer and it is not so easy to change
or to drive with rules oriented to the reliability. Moreover, the description of the
design is synthesized by commercial tool whose the behavior is heuristic and not
optimizing for dependability.
On the other hand, the design implementation is done by the place and route tool.
If the commercial place and route tool allows the use of constrains, a correct setting
can lead to a better reliability level. So the study of techniques to improve the
reliability of the design has led to focus on the place and route strategies. In the
investigation, three aspects are taken into account:

• use of capability of the logic architecture;

• placement strategy;

• routing strategy.

Two studies are performed to address the above mentinated aspects. A first study
shows how the appropriate use of the logic architecture leads to an improvement in
terms of area and reliability. The second study shows the high importance of the
placement strategy on the following routing step and on the global performance of
the design.

For the first study, according to other users reports, an anomaly in the use of the
capability of the logic architecture was detected. It was found that the capability of
the logic resources were not completely exploited. The study shows how this leak
has a grave impact in terms of area and reliability of the design. The results of
this study induced the Atmel company to take measures on this point and now the
problem results already fixed in the last release of the Precision RTL synthesis tool.

Finally, the placement strategy was investigated. Place and Route strategy is
a mandatory to address later the problem of dependability. Investigating on this
strategy, some other more fundamental problems are shown up. The use of the
placement and routing Figaro has turned out that the aspects of timing can be im-
proved from the automatic solution given by Figaro. Several users feedbacks [4] [?]
[?] had led the priority of the study on the timing performance of the system.

2

Since the commercial place and route tool Figaro does not support any kind of ex-
ternal constrains for the logic placement, the task was oriented to develop a platform
to use another placement algorithm in place that the one implemented in Figaro.
The Platform to Upgrade and Redo Placement Leading Efficiency (PURPLE) was
developed to be joined Figaro. This platform allows the use of several independent
placement algorithms on the Atmel architecture. PURPLE has the capability to give
the netlist description of the circuit under test, contains a placement engine and con-
verts the placement solution given by the engine in the proper format readable by
Figaro. In this way PURPLE hooks on Figaro, creating a parallel implementation
flow.
The last step provides PURPLE with a placement algorithm. After the assessment
of the time needed to develop a technology-dependent algorithm, the use of an al-
ready coded algorithm is evaluated as the best solution. The research was oriented
to a timing-driven algorithm, technology independent and open source tool. The
Versatile Place and Route (VPR) FPGA CAD tool meets the requirements [3]. Af-
ter a deep work to set the tool for the Atmel architecture the results show that the
route capability for the solution is the most critical limitation of the tool. Although
VPR is proposed as a generic tool for different FPGA architectures, the target ar-
chitectures used for the placement algorithm development are more complex than
the Atmel one, so they do not present some limitations as in our case. In fact the
idea of VPR is based on Altera and Xilinx architectures that are more complicated
than the Atmel one. In particular, they contain complex routing elements that can
route large implementation on the device. For these reasons some architectural lim-
itations are not taken into account in the VPR algorithm, this leads to have some
solution for the Atmel devices that present the problem of congestion.

In this final report the the three main tasks carried out on the Atmel FPGA
devices are presented:

• The extension of static analysis tool with debug capabilities –Susanna and
Jonathan –.

• The analysis of utilization of logic architecture capabilities –Use of Macro in
Atmel architecture –.

• The development of a platform to apply a new placement algorithm to the
implementation flow –PURPLE–.

It is organized as follows. Each task is presents in one chapter. For each chapter,
Section 1 presents the introduction to the task. Section 2 gives the motivations of
the task. In the Section 3 the developed study is presented, while the experimental
results are described in section 4. Finally, the conclusion are depicted in Section 6.

3

Contents

Summary I

1 Susanna and Jonathan 1

1.1 Introduction . 1

1.2 Motivation . 2

1.3 Proposed Approach:An Overview . 3

1.3.1 Background terminology: netlist elements 3

1.3.2 Susanna . 3

1.3.3 Jonathan . 4

1.4 Experimental results . 8

1.4.1 Reverse engineering: Figaro Project File 8

1.4.2 Test results . 10

1.5 Conclusion . 20

2 Use of macros in Atmel architecture 21

2.1 Introduction . 21

2.2 Motivation . 21

2.3 Proposed Approach: An Overview . 22

2.4 Conclusion . 23

3 Platform to Upgrade and Redo Placement Leading Efficiency 24

3.1 Introduction . 24

3.2 Motivation . 24

3.3 Proposed Approach: An Overview . 27

3.3.1 Intermediate Files . 28

3.4 A placement engine: Versa-Tile Place and Route 31

3.4.1 The congestion factor . 33

3.5 Experimental Results . 35

3.5.1 Why does VPR not work properly for Atmel? 38

3.6 Conclusion . 39

4

Bibliography 40

A Annex 42

B Annex 48

C Annex 55

D Annex 66

5

List of Tables

1.1 Experimental results ATF40K -Susanna- 13
1.2 Experimental results ATF280E -Susanna- 14
1.3 Experimental results AT40K -Jonathan- 16
1.4 Experimental results ATF280E -Jonathan- 16
1.5 Instances I8051 . 17
1.6 User macros I8051 . 18
1.7 Fault Injection Results . 19
1.8 I8051 Critical Bits . 19
3.1 Manual placement . 26
3.2 Simple VPR test experiments . 36
3.3 Routed contentions for acdc circuit 37

6

List of Figures

1.1 Susanna and Jonathan flow . 5
1.2 Design Implementation flow . 6
1.3 Critical bit information . 7
1.4 Classification criticality AT40K . 11
1.5 Experimental results AT40K . 12
1.6 Experimental results AT280 . 15
3.1 PURPLE scheme . 28
3.2 Netlist example . 30
3.3 VPR CAD flow . 32
3.4 VPR solutions . 37

7

Chapter 1

Susanna and Jonathan

1.1 Introduction

Due to the many advantages of the reconfigurability of SRAM-based FPGAs, their
use is increasing even in systems requiring a high level of dependability (safety,
availability, security, etc.). Moreover the missions being a collaboration between
several space agencies exportation rules must be fulfilled. In particular these rules
- International Traffic in Arms Regulation (ITAR) - restrict drastically component
availability. This is especially critical for FPGAs since most of the manufacturers
are in US. Under this conditions the Atmel FPGA are becoming more and more
interesting for the European market.

The main issue for such systems is their working conditions: they often have to
operate under harsh environment, such as ionizing radiations, or they may have to
resist to voluntary fault-based attacks, creating similar perturbations by using for
example a laser. Single-event effects (SEEs) induced by the interaction of particles
with integrated circuits are a well-known threat for space systems, which are di-
rectly exposed to cosmic rays. With the shrinking of the transistor sizes in modern
technologies, systems are also sensitive to atmospheric particles at sea-level.

The most probable effect, when we consider SRAM-based FPGA at sea-level, is
the single-event upset (SEU), i.e. a bit-flip in the embedded memories [7]. Faults in
the configuration memory of a SRAM-based FPGA directly modify the definition of
its function, dangerously impacting its ability to operate properly [8]. These errors
usually last until the configuration memory is refreshed. Moreover, detecting and/or
correcting these errors induce, in most cases, a high cost, that can still increase if
multiple-bit upsets (MBUs) must also be considered. Protecting the system against
faults in the configuration memory is an important issue at design time. Several
design-level solutions exist to develop fault-tolerant architectures from SRAM-based
FPGAs. An example using the triple modular redundancy (TMR) technique is given

1

1 – Susanna and Jonathan

in [9]. In all cases, the designer has to make a compromise between cost (area, power
and performance overheads) and fault-tolerance.

At design time, the evaluation of the effects of faults in the device and the choice
of the best protection strategy require realistic fault models. To achieve this, it is
necessary to use results from actual fault injections on a test device to develop the
fault models. The better the models are, the more accurate the evaluation of the
dependability will be. An on-going collaborative effort has allowed us to develop a
software tools and associated methodologies for performing fault injections in Atmel
FPGA devices [10], see Annex A. The software for the static analysis was developed
in collaboration with Politecnico di Torino and extended during the YGT project
at ESA. The static analysis tool is named Susanna, while the extended version done
in ESA is called Jonathan.

1.2 Motivation

Modern FPGAs have been designed with advanced integrated circuit techniques that
allow high speed performance, joined to reconfiguration capabilities. This makes new
FPGA devices very advantageous for space and avionics computing. However critical
environments makes FPGA’s configuration memory a critical part of the system.
Different solutions are taken into account from the different vendors. The Atmel
company developed radiation hardened SRAM-based reprogrammable FPGAs. It
has been especially designed for space application by implementing hardened cells
and permanent self integrity check mechanism [11].

Anyway RHBD devices, although robust against SEEs, they still have a not-null
cross section. The most recent product, the ATF280E has a susceptibility threshold
(LETth) of 30 MeVcm2/mg at Vcc min and saturation cross-section of 3x10−9 bit−1.
As a result, designers must take into account the contribution of ionizing radiation
on such devices when evaluating the robustness of FPGA–system [10].

The the impact of radiation is evaluating on the configuration memory. The de-
signers do not have visibility on the low-level information stored in the configuration
memory. For this reason, making handling the information about the sensitiveness
of the system for the designer, becomes a basic necessity. The analysis results can
lead the strategy for fail-safe design. In order to have a correlation between each sin-
gle bit of the configuration memory and the design instance it belongs to, Susanna is
enhance with design description reading capability. This makes the reliability data
correlated to the instances of the design. This feature, given by Jonathan, offers to
the designer a set of statistics in order to detect the most critical parts of the design
under test.

2

1.3 – Proposed Approach:An Overview

1.3 Proposed Approach:An Overview

1.3.1 Background terminology: netlist elements

In order to give a general view and a referment for the terminology used lately, this
section describe the design database according to the Precision Synthesis Reference
Manual [12]. In a synthesis tool the elements in the design database are:

• Library. All design and technology information resides in a library. A library
can contain design data, technology cells, or primitive cell. The primitive cell
library contains a generic set of combinational and sequential logic cells that
the synthesis tool uses to represent Hardware Description Language (HDL) as
gate-level networks.

• Cells. A cell represents either technology information or levels of design hi-
erarchy. A set of cell create a library. A cell can be composed by different
views.

• Views. A view contains interface information and might also contain a netlist.

In analogy to VHDL, a cell is equivalent to an ENTITY and a view is equivalent
to an architecture. In summary, the following objects are typically contained within
a view and are used to represent netlists and hierarchies in a design:

• A view has ports, nets and instances.

• A port is a terminal of a view.

• An instance is a pointer to a view.

• A net is a connection between ports and/or port instances (pointer to the port
of the view under an instance).

• An elementary instance is a leaf instance that does not contain hierachy.

1.3.2 Susanna

Susanna is a static analysis too aimed at evaluating the sensitiveness of designs
implemented on RHBD FPGAs from Atmel. The tool analyzes designs implemented
on such device to identify the portion of the configuration memory that is sensitive,
i.e., all those configuration memory bits that, if affected by soft errors, result in
modifications to the FPGA resource that lead to application failure. Thanks to
this tool a precise design dependent dependability analysis can be performed, and

3

1 – Susanna and Jonathan

alternative design solutions can be evaluated easily. To have more details about the
algorithm see Annex B.

The report of the static analysis tool contains a list of all the critical bits. From
the configuration memory, the configuration bits for the logical (Core Cell) and
routing (Repeater) physical resources are taken into account; while the configuration
bits for the I/O and the RAM resources are considered out of scope. For each
configuration bit classified as critical are showed the address in the configuration
memory and the physical resource it programs, see Figure 1.3. The information are
reported as follow:

1. Byte address: byte address in the configuration memory.

2. Bit number: bit of the byte address.

3. Bit value: bit value of the critical bit under test.

4. Resource: type and coordinate of the physical resource that the bit under test
belongs to. The type can be Core Cell (CC) or Horizontal Repeater (HR) or
Vertical Repeater (VR). The coordinate detect the position of the resource in
the matrix representation for island-style FPGA.

1.3.3 Jonathan

The tool Jonathan is an enhancement part of the static analysis tool Susanna,
see Figure 1.1. Using the combination of Susanna and Jonathan the whole design
flow is investigated. From the RTL description to the bitstream data, the circuit
implementation is explored and correlated.

While Susanna works on the last step of the implementation flow, where the cir-
cuit information are ready to be stored in the configuration memory of the device,
Jonathan has got the visibility of all the different descriptions of the design during
the several stages of design flow, see Figure 1.2. Starting from an RTL description
of a design, the synthesis tool constructs a corresponding network of gates in a given
technology. The Place and Route tool provide to map these gates on the real archi-
tecture of the device and place and route the resources used to implement the circuit.
Finally, the Place and Route Tool generates the bitstream in order to program the
configuration memory of the device. After the analysis of the configuration mem-
ory of the design, the criticalities are lead back across the design flow. Jonathan
adds design level details to the information in the report of Susanna. As showed in
Figure 1.3 the information about the part of the design programmed by the critical
bit are added to the configuration memory and physical resource info. This design
information are showed by all the hierarchy of the design, from the most external
instance to the elements implemented in the physical resource programmed by the

4

1.3 – Proposed Approach:An Overview

Figure 1.1. Susanna and Jonathan flow

5

1 – Susanna and Jonathan

Figure 1.2. Design Implementation flow

6

1.3 – Proposed Approach:An Overview

bit. The information cover all the steps of the implementation, from the RTL design
model, given by the synthesis tool Precision, to the mapping information given by
the place and route tool Figaro.

The information are reported as follow:

1. Hierarchical Design Instance: all the hierarchical path from the most external
instance to the most internal hierarchical instance, the hierarchy follows the
RTL model of the design.

2. Map instance: name of the physical resource after the mapping.

3. Design instance: name of the RTL elementary instance contained in the phys-
ical resource.

Figure 1.3. Critical bit information

The basic idea to get all the information about the implementation is to extract
the data from the project file of the place and route tool Figaro. The Figaro tool
takes in input the description of the netlist in the Electronic Design Interchange
Format (EDIF), then map, place and route the design on a specific FPGA and finally
gives the bitstream in order to program the device. The EDIF file is producted by
the synthesis tool Precision. Figaro mainly works on 4 steps:

• Open is the process to open an existing project file or the .edif file.

• Mapping is the process of optimizing design logic and adapting it to a specific
architecture.

• Partitioning is the process of allocating the design logic to parts on the board.

7

1 – Susanna and Jonathan

• Compilation is the combination of placement and routing.

All the information about the execution of each of the above steps are stored
in the project file. At the end of all the implementation process, in the project
file are stored: the information at RTL level from the EDIF file, some architectural
information, the mapping between the netlist and the library of the target device,
the position of the logic/routing/IO used elements in the FPGA and the routing
information. The project file is in a readable but not described format. By means
of a deep reverse engineer work the information are decoded and tagged, see section
1.4 for the classification of the information.

In order to extract the data a parser is implemented. The parser can read the
project file after the Compile step and get the information at the different levels.
The parser is able to get the RTL information and connect them with the physical
used resources stored in the project file after the place and route steps. Moreover,
the parser create a graph to represent the netlist by means of the extracted routing
information. This graph represents the final netlist implemented on the bitstream
after the last optimization done by Figaro. In fact, after a careful analysis we find
out that Figaro performs a further optimization step after the ones performed by
the synthesis tool.

The connection to the Susanna report is done by the physical resource position.
In fact, from Susanna the correlation between the bit and the physical resource is
given. On the other hand, Jonathan provides the correlation between the netlist and
the physical implementation. Finally the data are merged by the physical resource
field.

1.4 Experimental results

1.4.1 Reverse engineering: Figaro Project File

The Figaro project file (.fgd) is created during all the process of place and route. A
long reverse engineering work led to decode the information stored in this file and
classify them according to the implementation design flow.

The Figaro project file is structured in five main parts:

• General information

• Technology mapped circuit description

• Implementation placement description

• Implementation routing description

• Project features

8

1.4 – Experimental results

The general information part contains the data relative to the device selected,
the library for the macros, the working directory and the design flow information.

The technology mapped circuit description contains the description of the circuit
as imported from the .edif file. This description comes from the synthesis tool and
it has to undergo a phase of technology optimization by Figaro. In this optimization
phase the redundant part of the circuit are deleted and some boolean functions are
redistributed among the instances. The circuit is described as hierarchy of Cells, see
section 1.3.1. The external cell contains all the design is unique and it is identified
by the keyword EXTERNAL. The format for the description of each hierarchical
cell of the circuit is:

• list of the inputs

• list of the outputs

• list of the technology instances

• list of the nets

The hierarchical cell description is identified by the tag HirarchicalCell.
In the Implementation placement description section are described all the in-

stances mapped and placed on the selected device. During the mapping process the
design is optimized and adapted to a specified vendor architecture. In this phase,
mapping takes the instance from the netlist design and:

1. perform some optimization for area (to reduce the space needed by the design);

2. converts the instances to a technology-indipendent form;

3. convers them to instance which are specific to selected device;

So, after mapping, more RTL instances from the technology mapped circuit descrip-
tion level can be put together in a single mapped instance. For each mapped instance
the most significative description fields are:

• name: specifies the name of the instance;

• technology macro: specifies the type of macro implemented in the instance;

• functioning : specifies the logic function implemented in the instance;

• assoc: specifies the RTL instances of the technology mapped circuit description
level included in this mapped instance. The representation is in a coordinate
format [x y], where x is the index of the most internal hierarchical cell that
contains the RTL instance, whose index is y;

9

1 – Susanna and Jonathan

• grid origin: specifies the position of the Core Cells [13] assigned during place-
ment phase to the instance;

• net table: specifies the assignment of the boolean function variable to the input
of the Core Cells.

The implementation part starts with the keyword implementation; each mapped
instance description is labeled with DynamicMacroInstance or MacroInstance.
The first one describes functional or dynamical macros [14], the second one describes
a Library of Parameterized Module (LPM) macro or an user macro [15].

The following part is the implementation routing description. In this part is
stored the routing information. For each net the routing is described by means of
a tree structure. This tree structure describe the net from the output of a Core
Cell to the input of all the fanout Core Cells, go through Local/Local turns, Ex-
press/Express turns, Repeaters, Core Cells used to implementing routing functions
[13]. The format to describe the net is particular and complicated, see the PURPLE
User Guide [17] for more details.

Finally, the Project features part contains some other information about the
Figaro GUI, the pin out, the design flow, etc...

1.4.2 Test results

In order to evaluate the Susanna and Jonathan tools we have run the tool on sev-
eral benchmark circuits. The circuits we used range from a simple gate sets up to
complex processor cores. The experiments are taken on both the architectural con-
figuration AT40K and ATF280E. For each circuit under test the VHDL description
is synthesized using Precision RTL 2010a Update1.228OEM Atmel. The devices
AT40KEL040KMQFP256 and ATF280EMQFP256 are respectively selected for the
synthesis and the mapping of FGEN2 macro cell is enabled. The outcome .edif file
is processed by Figaro version ids9.0.2, in order to implement the logical synthesis
on a real device. Figaro is used in a complete automatic way to generate the bit-
stream. Finally the bitstream and the project file of Figaro are given in input to
the Susanna/Jonathan tool in order to detect the sensitiveness of the configuration
memory on the basis of the implemented circuit.

For each architecture, the data are organized as follow:

• One table shows the results of Susanna tool

• One table shows the results of Jonathan tool

10

1.4 – Experimental results

Susanna experimental results

The Susanna experimental results are presented showing the characteristic of the
benchmark circuits and the sensitiveness of the configuration memory. For each
benchmark are reported the name and the identification of the circuit, the func-
tionality implemented, the number of occupied logic resource, the number of pro-
grammed bits in the configuration memory and the number of the configuration bits
detected as critical.
The Susanna experiment results are showed in Table 1.1 for the AT40K architecture
and in Table 1.2 for the ATF280E architecture.

Moreover, the critical bits are classified in logical and routing critical bits de-
pending on the functionality of the switch programmed by that bit. All the bits
that program the LUT, the mux for the selection of the LUT inputs and outputs
and the D Flip Flop inside the Core Cell architecture are classified as logic bit. On
the other hand, the Repeater configuration bit and the Core Cell configuration bits
used to perform Express/Express Turn or Local/Local turn are classified as Routing
bits. The impact of the routing on the sensitiveness of the circuit increase with the
area occupied by the circuit. Anyway its value is not much bigger than the logic
ones and it heavily depends on the place and routing strategies, as showed in Figure
1.4 for the AT40k architecture.

Figure 1.4. Classification criticality AT40K

Different sensitiveness metrics can be compared to analyze how application-
oriented analysis differs from other methods. Figure 1.5 and Figure 1.6 show the
sensitiveness, with respect three possible metrics. The first one is based on the de-
vice cross-section and is basically the area occupied by the design. The second one
is based on the number of programmed bits, bits that assumes a value different from

11

1 – Susanna and Jonathan

the one in an empty bitstream. Finally, the metric estimated by the static analysis.
All the data are expressed in percentage respect the whole configuration memory
or area occupied. As showed in both the figures, the metric based on the number
of programmed bits lead to completely unrealistic estimations, leaving out all those
bits that, even if not used, can induce misbehaviors [10] [18]. On the other hand,
the occupied area without any index of the spread of the circuit is a rough metric.
In fact, as showed in Figure 1.5 for the circuits implementing a subset of the Viper
processor and the optimization of the same circuit (b14 and b14 1), although they
occupy more or less the same area of the AT40K device the sensitiveness is different.
This can be associated, beyond the optimization of the logic, with the spread of the
circuit, the different placement strategy and the consequent different routing.

Figure 1.5. Experimental results AT40K

Jonathan experimental results

On the Jonathan side, several statistics can be extracted from the experimental
results depending on the complexity of the circuit hierarchy. Jonathan capabilities

12

1.4 – Experimental results

C
ir

cu
it

F
ig

ar
o

P
ro

gr
am

m
ed

C
ri

ti
ca

l
lo

gi
c

b
it

s
re

so
u
rc

es
b
it

s
T

ot
L

og
ic

al
R

ou
ti

n
g

b
02

F
S
M

re
co

gn
iz

es
B

C
D

n
u
m

8
90

38
7

30
2

85
b
01

F
S
M

co
m

p
ar

es
se

ri
al

fl
ow

11
24

2
10

95
69

3
40

2
b
06

In
te

rr
u
p
t

h
an

d
le

r
13

23
7

12
40

71
3

52
7

b
09

V
ot

in
g

sy
st

em
48

91
1

39
81

25
80

14
01

b
03

S
er

ia
l

co
n
ve

rt
er

54
10

37
43

20
29

27
13

93
b
08

S
u
b
-s

eq
u
en

ce
s

fi
n
d
er

58
13

72
60

40
33

46
26

94
b
10

A
rb

it
er

56
12

20
54

52
31

71
22

81
b
13

In
te

rf
ac

e
m

et
eo

se
n
so

r
93

17
47

77
54

50
71

26
83

b
07

C
ou

n
t

p
oi

n
ts

on
a

li
n
e

11
3

21
22

95
06

58
51

36
55

b
11

S
cr

am
b
le

st
ri

n
g

13
6

28
54

13
78

3
74

18
63

65
b
04

C
om

p
u
te

m
in

an
d

m
ax

18
1

34
07

16
06

0
91

50
65

10
b
05

E
la

b
or

at
e

co
n
te

n
ts

of
m

em
or

y
21

5
46

35
22

09
1

12
31

2
97

79
b
12

1-
p
la

ye
r

ga
m

e
31

9
73

93
32

71
6

17
96

2
14

75
4

b
14

V
ip

er
p
ro

ce
ss

or
(s

u
b
se

t)
11

88
29

07
8

14
42

26
69

56
8

74
65

8
b
14

1
V

ip
er

p
ro

ce
ss

or
(s

u
b
se

t)
op

ti
m

iz
ed

11
88

26
46

3
12

91
98

65
17

4
64

02
4

T
ab

le
1.

1.
E

x
p

er
im

en
ta

l
re

su
lt

s
A

T
F

40
K

-S
u
sa

n
n

a-

13

1 – Susanna and Jonathan

C
ircu

it
F

igaro
P

rogram
m

ed
C

ritical
logic

b
its

resou
rces

b
its

T
ot

L
ogical

R
ou

tin
g

b
02

F
S
M

recogn
izes

B
C

D
n
u
m

8
97

423
316

107
b
01

F
S
M

com
p
ares

serial
fl
ow

11
226

1157
650

507
b
06

In
terru

p
t

h
an

d
ler

13
237

1099
713

386
b
03

S
erial

con
verter

60
1110

4376
3147

1616
b
09

V
otin

g
sy

stem
49

915
4111

2681
1430

b
10

A
rb

iter
82

1617
7362

5745
1617

b
08

S
u
b
-seq

u
en

ces
fi
n
d
er

78
1708

7469
4264

3205
b
13

In
terface

m
eteo

sen
sor

93
1737

7613
5876

1737
b
07

C
ou

n
t

p
oin

ts
on

a
straigh

t
lin

e
120

2226
10039

6077
3962

b
11

S
cram

b
le

strin
g

145
3104

15146
7724

7422
b
04

C
om

p
u
te

m
in

an
d

m
ax

181
3669

18629
9547

9082
b
12

1-p
layer

gam
e

399
8327

37484
21349

16135
b
14

1
V

ip
er

p
ro

cessor
(su

b
set)

op
tim

ized
1532

35509
182860

83391
99469

b
14

V
ip

er
p
ro

cessor
(su

b
set)

1188
35410

182303
82827

99476
I8051

p
ro

cessor
7518

186170
860712

448458
412254

T
ab

le
1
.2

.
E

x
p

erim
en

tal
resu

lts
A

T
F

280E
-S

u
san

n
a-

14

1.4 – Experimental results

Figure 1.6. Experimental results AT280

can create different statistics on the different level of the design flow. For a circuit
would be possible extract the statistic about the criticality of

• the RTL modules that compose the RTL hierarchical description of the circuit;

• the technology cells used after the synthesis phase;

• the macros used after mapping by the place and routing tool.

For the benchmark circuits, the Table 1.3 and the Table 1.4 reported the most
critical macro. For the small circuit no macro are used. The criticality of the macros
is calculated as sensitiveness bits as the set of logic and routing ones.

Another possible statistic given by Jonathan is the sensitiveness associated to
the different modules that compose a hierarchical circuit. As showed in Table 1.5
for the implementation of the I8051 processor are detected the different modules
that form the design. The External module represents the highest level module that
include all the others modules. The results show that the most critical instance is
the U RAM module for both the routing functionality and the complex sensitiveness

15

1 – Susanna and Jonathan

Circuit
Most critical

macro

b02 FSM recognizes BCD num no macro
b01 FSM compares serial flow no macro
b06 Interrupt handler no macro
b03 Serial converter no macro
b09 Voting system ix48175z63998
b10 Arbiter no macro
b08 Sub-sequences finder no macro
b13 Interface meteo sensor modgen counter tx conta ix12439z26862
b11 Scramble string cont1 addsub9 2i3 ix35655z57342
b04 Compute min and max ix47767z25108
b05 Elaborate contents of memory ix47180z35732
b12 1-player game count dec6 11i4 ix57040z58209
b14 1 Viper processor (subset) optimized ix4821z23561
b14 Viper processor (subset) ix314z23561

Table 1.3. Experimental results AT40K -Jonathan-

Circuit
Most critical

macro

b02 FSM recognizes BCD num no macro
b01 FSM compares serial flow no macro
b06 Interrupt handler no macro
b03 Serial converter no macro
b09 Voting system ix48175z63998
b10 Arbiter no macro
b08 Sub-sequences finder no macro
b13 Interface meteo sensor modgen counter tx conta ix12439z26862
b11 Scramble string cont1 addsub9 2i3 ix35655z57342
b04 Compute min and max ix47767z25123
b12 1-player game count dec6 11i4 ix57040z58209
b14 1 Viper processor (subset) optimized r addsub32 2i7 ix22593z23571
b14 Viper processor (subset) reg2 addsub32 2i10 ix314z23576

Table 1.4. Experimental results ATF280E -Jonathan-

16

1.4 – Experimental results

that adds to the sensitiveness of the routing the one of the logic; while the most
critical module only for the logic is the External one. Finally in Table 1.6 are showed
all the statistic results for the I8051 processor.

Instance
Critical bits

Tot Logic Routing

External 278968 162204 116764
U ALU 54377 27340 27037
U CTR 203903 95983 107920
U DEC 17191 9352 7839
U RAM 290771 153264 137507

Table 1.5. Instances I8051

Fault injection results

In order to validate the static analysis algorithm we performed fault injection in
a design, with both combinational and sequential logic. During a first step the
bitstream was analyzed by the Susanna/Jonathan tool, in order to identify the
sensitive bits; during a second step the injection was performed in every bit identified
as critical by the static analysis and in a set of 20.000 ”not-critical” bits randomly
chosen. Table 1.7 depicts the obtained results. In this table, for each type of
resource are reported the number of sensitive bits identified by the static analysis
(S.A.), the number of detected faults after the fault injection campaign (F.I.) and
the corresponding percentage. As expected the results show that the static analysis
is pessimistic. However, the analysis is quite accurate; indeed in four out of five cases
about the 63% of the configuration memory bits identified as critical are actually
critical during the fault injection experiments. Pessimistic prediction of Express-CC
resources are due to the fact that global routing spans over a big part of the FPGA.
Moreover, no one of the 20.000 ”not-critical” bits is detect in a fault by the fault
injection campaign, this means that the cover of the static analysis tool is 100%.

Once verified the accuracy of the static analysis tool, the SEU sensitiveness is
evaluated for the I8051 processor soft core implemented on the ATF280E device.
The results of this experiment are reported in Table 1.8. These results are accepted
for publication in IEEE RADECS 2010 [10], see AnnexA.

17

1 – Susanna and Jonathan

User Module
Critical bits

Tot Logic Routing

des 1 add16 0i3 ix27920z20265 995 797 198
des 1 add3 0i77 a3 a3 187 151 36
des 1 add4 0i74 a4 a4 246 197 49
des 1 addsub16 0i4 ix27920z28386 1027 815 212
des 1 multu16 0i2 modgen add 0 ix27920z42477 430 368 62
des 1 multu16 0i2 modgen add 1 ix27920z42495 454 388 66
des 1 multu16 0i2 modgen add 2 ix27920z20001 605 494 111
des 1 multu16 0i2 modgen add 3 ix27920z42514 481 411 70
des 1 multu16 0i2 modgen add 4 ix27920z42531 500 401 99
des 1 multu16 0i2 modgen add 5 ix27920z23662 628 528 100
des 1 multu16 0i2 modgen add 6 ix27920z41938 724 615 109
des 1 sub2 0i1 a2 a2 116 94 22
des 1 sub3 0i76 a3 a3 181 145 36
ix198z48278 455 356 99
ix198z48307 449 350 99
ix198z48310 473 374 99
ix20941z40508 491 401 90
ix21938z40524 450 384 66
ix22935z40513 510 418 92
ix23932z40512 442 400 42
ix24929z40518 428 393 35
ix25926z40511 436 394 42
ix26923z40518 456 408 48
ix27920z29683 405 357 48
ix27920z48374 437 347 90
ix27920z64154 364 297 67
ix60420z64055 363 289 74
ix60420z64062 379 304 75
ix60420z64115 369 296 73
v add7 0i75 ix53773z34473 392 314 78

Table 1.6. User macros I8051

18

1.4 – Experimental results

Type Detailed Type S.A [#] FI [#] Percentage [%]
Logic Core Cell 284 154 54.22

Routing Local - CC 36 22 61.11
Routing Express - CC 114 2 1.75
Routing HR 110 75 68.18
Routing VR 124 86 69.35

Table 1.7. Fault Injection Results

Type Detailed Type Critical Bits [#]
Logic Core Cell 448.458

Routing Local - CC 33.436
Routing Express - CC 96.586
Routing HR 142.099
Routing VR 140.133

Table 1.8. I8051 Critical Bits

19

1 – Susanna and Jonathan

1.5 Conclusion

The SEU cross-section static analysis approach we proposed has been evaluated
with respect to dynamic analysis perfomed by fault injection [10], see Annex A.
Though being more pessimistic, the static analysis tool is able to predict the actual
application sensitiveness with an accuracy of the 60% on the average and without
any false negative. The Jonathan capability gives a good estimation of the parts
of the design that results more critical. Moreover Jonathan is able to distinguish
between the hierarchical levels given by the designer project solution and the macro
used by the mapping phase. This means that also for the library macros is possible
make an estimation of the reliability. This could open the possibility to estimate the
sensitiveness of the existing libraries or define a library of user macros optimized for
the reliability fields.

20

Chapter 2

Use of macros in Atmel
architecture

2.1 Introduction

The macros are components designed to perform a functionality, fixed or defin-
able. The scope of the macros is to offer better performance in term of timing and
area. The Atmel macro libraries for the ATF40K and ATF280E families of FP-
GAs contains two kinds of macros: functional and dynamical. Functional macros
are components with fixed functionality, such as the 2 input AND gate. Dynamic
macros are designed to allow user specification of any desired functionality attached
as an attribute. The dynamic macros are provided to give the user better control
over the implementation of specific functions in a single Core Cell.
The study was aimed to prove that the efficient use of the logic cell architecture, by
means of dynamic macros, could improve the area and the reliability aspects. The
results of this study were sent to the Atmel company that provided this documen-
tation to the Mentor company in order to request the use of the macros during the
synthesis by Precision tool.

2.2 Motivation

As detected from other Atmel costumers, the use of the logic resource architectures
did not exploit all the capability of the element [4]. In particular, the macro de-
tection problems lead to a leak of performance in term of area and, as it has been
demonstrated, of reliability. Since the capability of the Atmel FPGA are restricted
due the size of the devices a further leak means a considerable reduction of the
device capacity. The use of macros has a profound impact on the design.

21

2 – Use of macros in Atmel architecture

2.3 Proposed Approach: An Overview

The analysis of the implementation of the circuits on the device shows that some
logic functions, that implement two different functions in a single Core Cell, are not
used neither during the synthesis phase nor the place and route one. The purpose
of this study is to illustrate the improvements that would be brought using all the
logic function available in the AT40k and AFT280E technology mapping.

The study was developed in two parts.

• First step: manual.
It confirmed the manual effort benefits.

• Second step: automatic.
To prove the benefits on more and bigger circuits.

During the first step some circuits were tested, in terms of area and sensitiveness,
before and after an manual optimization. This optimization provided the optimized
use of the logic cell architecture by means of user macros implemented specifically
for the design under test. This means that for each circuit under test, the design
implementation on the target device was studied. The use of the Core Cell archi-
tecture was manually examined.
If the single functionalities implemented on two different Core Cells could be im-
plemented on a single one Core Cell performing two functions, the functionality of
this Core Cell is implemented on a user macro. Figaro tool allows the user to create
own user libraries and store the macros for current and future designs. The user
macro is used like a black box during the synthesis and mapped in the design during
the place and route phase. So for each circuit under test a specific user macro is
created. The VHDL code of the circuit is modified in order to use the user macro in
place of the two functionalities, the new circuit description is synthesized. At this
point, the user macro is mapped in the circuit using Figaro that performs also the
Compilation stage. The two versions of the same circuit are analyzed by Susanna
and Jonathan tools. The results show that, beyond the area gain, the optimized use
of the Core Cell architecture improve the sensitiveness. In fact, the optimization
leads to occupy as much as possible of the capability of a logic cell. For this reason
the amount of configuration data not directly used to implement the function, but
that surround the logic and could induce an error on it, is thus reduced.

In a second phase an automatic tool was developed in order to detect the amount
of resources that could be optimized by means of the correct use of dynamic macros.
This automatic tool can recognize the couple of Core Cells which functions can be
collapsed in a single one Core Cell. This tool performs the analysis of the EDIF
netlists of realistic circuits implemented on Atmel FPGAs. The analysis process has
been developed on the basis of the Polito Automatic Hardening Tool (PAHT).
See Annex C and Annex D for all the details about this study.

22

2.4 – Conclusion

2.4 Conclusion

This study showed, in both the steps, manual and automatic estimation, the gain
in term of area. In particular, for the manual experiments the sensitiveness gain
was also showed. In average the gain in term of area is around 10%, with a pick of
15% for a simplified implementation of the Leon2 (without cache). This study has
contributed to have the use of optimized macro in the new release of synthesis tool
Precision RTL Synthesis 2010a Update1.228OEM Atmel.

23

Chapter 3

Platform to Upgrade and Redo
Placement Leading Efficiency

3.1 Introduction

Placement is the process by which a netlist of circuit blocks (which are whether I/O
or logic blocks) are mapped onto physical location in an FPGA. Placement is one
of the most important steps in the post-RTL synthesis process as it directly defines
the interconnects, which have now become the bottleneck in circuit and system
performance. This task is aimed to study and development a platform to apply a
new placement algorithm in order to improve the timing/criticality aspects of designs
implemented on the Atmel AT40K and ATF280E series. The Platform to Upgrade
and Redo Placement Leading Efficiency (PURPLE) idea was born to provide an
independent solution in order to improve the performance of the implementation
of a design on an Atmel FPGA device. PURPLE can be used to evaluate the
different characteristics of a circuit using different placement strategy. Moreover, the
placement strategy could be lead to improve the performance of an implementation
or improve the reliability of it.

3.2 Motivation

The place and route is responsible for producing a physical implementation of an
application netlist on the FPGA devices. More specifically, the placement tool
determines the actual physical location of each netlist logic block in the FPGA
layout, and the routing tool assigns the signals that connect the placed blocks to
routing resources in the FPGA’s interconnect structure. Due to the finite nature
of an FPGA’s interconnected structure, the success of the routing tool is heavily
reliant on the quality of the solutions produced by the placement tool. Placement

24

3.2 – Motivation

tools are not only used for subsequent routing step but a timing-driven router can
only produce routings that are as good as the placement on which the routing is
performed, so to extract more speed out on an FPGA it is essential that timing-
driven placement algorithms be used [4] [5] [6].

The Atmel Figaro tool performs the place and route in a complete automatic
way. Moreover the manual placement is supported in order to optimize placement
manually. The use of this strategy can not be considerate ordinary, the Figaro Help
warn the designer off using the manual placement if he is not familiar with the
architecture [16]

Detailed knowledge of the architecture could be used to improve the
timing along the paths in the design by manual editing.

In a first feasibility study, some experiments are done to evaluate the benefits
of the optimized placement. The results of the tests show that it is possible to
reach a gain in frequency of about 30% with manual placement, although the device
utilization increase due the growth of the routing complexity, see Table 3.1. Another
aspect is that the time needed to achieve this improvement in performance weigths
heavily on the results. Up to 8 hours were needed to achieve a good solution. Then
after a certain value of improvement further effort is not worth, as shown in the
second entry in Table 3.1.

The experiments are taken on small circuits (from 6% to 15% of the device
area is used), the complexity of the operation increases with the size of the circuit.
In fact optimize placement manually for big circuit can be used to make specific
adjustments not to improve the global performance of the implementation. The
manual placement can be used to:

• Resolve contention.

• Make easier to route a specific net.

• Squeeze the design that the automatic placement has not succeeded in fitting.

• Improving timing on a path.

• Reserve a particular area for an instance.

Although the manual placement is presented as a powerful technique to refine upon
the place and routing implementation, it is the Figaro Help itself that warns on use
of this technique.

Only optimize placement manually if you are familiar with the device
architecture and know how your design should us it.

25

3 – Platform to Upgrade and Redo Placement Leading Efficiency

C
ircu

it
A

tm
el’s

P
&

R
M

an
u
al

P
lacem

en
t

G
ain

T
im

e
M

ax
D

ev
ice

M
ax

D
ev

ice
F

req
u
en

cy
D

ev
ice

[h
]

freq
u
en

cy
u
tilization

freq
u
en

cy
u
tilization

u
tilization

M
em

ory
elab

oration
7.1M

H
z

11.4%
10.4

M
H

z
12%

32%
5%

8
10.5

M
H

z
11.8%

+
2

S
cru

b
le

strin
g

10.9M
H

z
6%

15
M

H
z

8.5%
27%

29%
6

1-p
layer

gam
e

11.5M
H

z
15%

15.3
M

H
z

20.3%
25%

26%
5

T
ab

le
3.1.

M
an

u
al

p
lacem

en
t

26

3.3 – Proposed Approach: An Overview

Furthermore, no external constrains are supported to drive the placement. This
means that the development of an independent platform becomes necessary to auto-
mate the re-place changes. The independent platform can allow both of the methods:

• Use of other placement algorithms in order to improve a particular features of
the design.

• Use of a set of constrains to drive the placement algorithm.

3.3 Proposed Approach: An Overview

The platform should work in parallel with Figaro tool in order to let Figaro provide
the routing step and the bitstream generation. Moreover it might be possible use
the Figaro solution as starting point for the re-placement. The basic idea is that
the platform would be able to:

• read a Figaro project file;

• give the information about the Figaro placement solution;

• contain a re-placement engine;

• create a Figaro project file implementing the new solution in order to feed
Figaro with the the new implementation and complete the design flow.

As showed in Figure 3.1 the PUPLE platform takes as input a Figaro project file
and produce another Figaro project file implementing the new placement solution.
The platform is composed by three main blocks:

• Front End.

• Placement Engine.

• Back End.

The Front End block extracts the netlist of the circuit under test from a Figaro
project file that implements the circuit on a specific device. The information is
fed to a placement engine to obtain a new placement. The placement solution is
transformed in a new Figaro project file by means of the Back End block.
The Front End block implements a parser able to read the Figaro project file and
give as output the netlist description. The parser is basically the same used for
the Jonathan tool with some modifications for the netlist storing. The Back End
block implements part of the same parser extended with the capabilities of recognize

27

3 – Platform to Upgrade and Redo Placement Leading Efficiency

the part of the project file implementing only the placement step and change the
physical resource positions according with the output of the placement engine.

The Placement Engine block contains the coded placement algorithm that the
user wants to apply. This block is movable, it is possible exchange this block with
several placement engines. The independency of the blocks that compose PURPLE
is given by intermediate files, as showed in Figure 3.1. The data passed by the
single blocks are write on a file. In particular, for the two intermediate files used in
PURPLE to describe the netlist and the placement solution, it is defined a specific
format for each of them, see following section.

Figure 3.1. PURPLE scheme

3.3.1 Intermediate Files

To allow the complete independency between the modules that composed PURPLE,
two intermediate files are used:

• Netlist description file

• Logic Position file

28

3.3 – Proposed Approach: An Overview

The format of these files is simplified as much as possible in order to give the max-
imum of handling to the developer of the placement engine.

The netlist description file is composed by three parts:

• Pin input, specified using the keyword PI, lists all the input pins

• Pin output, specified using the keyword PO, list all the output pins

• Gates, specified using the keyword GATES, list all the gates

• Fan out, specified using the keyword fan-out, describe the single nets

All the keywords are preceded by the semicolon simbol (;). For each net the de-
scription is

• Name of the net, specified using the symbol semicolon (;) in front of the name

• Number of fan-out elements

• Name of elements in fanout, as many as the previous field indicates

An example netlist described with this format is given below. The netlist de-
scribed is represented in Figure 3.2.

; PI

inputA

inputB

inputC

; PO

outputX

outputY

; Gate

gateG

gateH

gateK

; fan-out

; inputA_net

3

gateG

gateH

gateK

; inputB_net

2

29

3 – Platform to Upgrade and Redo Placement Leading Efficiency

gateG

gateH

; inputC_net

1

gateK

; gateG_Xnet

2

gateH

; gateG_Ynet

1

gateK

; gateK_Xnet

1

outputX

; gateH_Xnet

1

outputY

Figure 3.2. Netlist example

This netlist description file is generated by the Front End block processing the
Figaro project file, where the gates are the logic cells used to implement the circuit

30

3.4 – A placement engine: Versa-Tile Place and Route

and the nets are the connections among them.

The other intermediate file is the position description file. In this file are re-
ported the new positions for the logic cells and I/O elements. The format is shown
below:

For logic cell:

[xOld yOld] --> [xNew yNnew]

For I/O element:

[xOld yOld label] --> [xNew yNnew label]

where xOld and yOld are the coordinates of the initial placement given by the
Figaro solution, stored in the Figaro project file in input; while xNew and yNew are
the coordinates assigned by the new placement. The label for the I/O specified the
type of I/O.

3.4 A placement engine: Versa-Tile Place and

Route

Three factors combine to determine the performance of an FPGA: the quality of the
CAD tools used to map circuits into the FPGA, the quality of the FPGA architecture
and the electrical (i.e. transistor level) design of the FPGA [23]. In order to validate
the existing CAD tool and to improve the performance of the Atmel FPGAs we
decide to work also on a placement engine for the PURPLE platform.
During the assessment phase for the placement engine task two main alternatives
are evaluated to implement the placement engine:

• Develop a specific placement engine for the Atmel FPGA devices.

• Use a well-know generic placement engine for FPGA devices.

Since the limited time and resources the final decision was to not implement a
new dedicated placement engine for the Atmel architecture but use an existing,
timing-driven, well-known one. There are several works on generating timing-driven
placement examples [21] [22]. However, not everyone can match our requirements.
After a deep research in the literature we selected the Versa-Tile Place and Route
(VPR) tool from University of Toronto. VPR is a placement and routing tool for
array-based FPGAs, VPR incorporates also a timing-driven router. A timing-driven
router can only produce routings that are as good as the placement on which the

31

3 – Platform to Upgrade and Redo Placement Leading Efficiency

routing is performed, so to extract more speed out of an FPGA it is essential that
timing-driven placement algorithms are used.

In brief, the reasons that led us to choose the VPR tool are:

• The expectation of being a general and flexible tool like described by the
authors [25],

• The use of timing-driven algorithm (simulating annealing) [24],

• The open-source code [3],

• The robustness of the code (VPR project started in 1996 and it has been added
to the SPEC 2000 suite of computer benchmarcks)

• Largely used in the research community

The inputs of VPR consist of a technology-mapped neltlist and a text file de-
scribing the FPGA architecture, see section 3.1. VPR can place the circuit and also
perform either a global router or a combined global/detailed route of the placement.
VPR’s output consist of the placement and routing, as well as statistics such as
routed wirelength, track count, etc. etc. For our purpose we use only the placement
capability of the tool.

Figure 3.3. VPR CAD flow

Some of the architectural parameters that can be specified into the architecture
description file are:

32

3.4 – A placement engine: Versa-Tile Place and Route

• the number of logic block input and outputs,

• the side(s) of the logic block from which each input and output is accesible

• the logical equivalence between various input and output pins

• the number of I/O pads that fit into one row or one column of the FPGA

• the dimensions of the logic block matrix

In addition, if the routing is to be performed, one can also specify the characteristic
of the routing lines.

The details of the algorithm used on this tool and the relatives works are out of
the purpose of this report, please check the website [3] or the web page of one of the
authors Vaughn Betz [26] for more information.

In order to interface the PURPLE platform to the VPR tool the format conver-
sions are needed. Two converter tools are developed in order to convert from and to
the intermediate files of PURPLE platform, see section 3.3.1. One tool converts the
netlist input file from the intermediate netlist description format to VPR format,
while the other tool translate the placement output file of VPR to the logic position
file of PURPLE. The respective converters are developed in C/C++ and each one
contains a parser, developed in flex and bison languages, for the file in input.

3.4.1 The congestion factor

For large circuit (≥ 25% area of the FPGA occupied), the congestion of the solution
is becoming an important factor for the effectiveness of the routing step. If the
congestion is such that the contentions routing resource are so many, the placement
solution can still be implemented by Figaro but the tool is not able to route it.
Several measures are taken in order to solve this issue.

A first research led to a couple of works on the congestion factor for the VPR
tool [19] [20]. These works introduce a new congestion driven placement algorithm
for FPGA, based on the VPR algorithm, modified with a congestion factor. To
reduce the routing channel width, a placement algorithm has to pay attention to
both the resource consumed by each net, and the interaction (congestion) among
different nets. The idea is to reduce the amount of nets in a small fraction on the
chip.

The cost function in VPR is:

∆C = λ
∆CT

PreviousCt
+ (1 − λ)

∆CW
PreviousCW

(3.1)

33

3 – Platform to Upgrade and Redo Placement Leading Efficiency

where CT is the timing cost, CW is the wiring cost and λ is a constant between 0
and 1 which trades off between cost and wiring cost.

CT =
∑∨

i,j
⊂circuit

CT (i,j) (3.2)

Crit(i,j) = 1 − Slack(i,j)

Dmax

(3.3)

where CT (i,j) is the timing for each edge of the netlist and β is a constant from 1
to user-defined maximal value which is 8 by default. The wiring cost is defined as:

CW =
Nnets∑
i=1

q(i)(bbx(i) + bby(i)) (3.4)

In the congestion works is used the same top-level cost function in Equation 3.1 and
the top-level timing cost function in Equation 3.2. The formulas to compute the
timing cost for each edge and the witing cost are modified as shown below:

CT (i,j) = History(i,j) ∗Delay(i,j) ∗ Crit(i,j)β (3.5)

CW c = Congestion ∗
Nnets∑
i=1

q(i)(bbx(i) + bby(i)) (3.6)

Where the History factor assign more weight to a recent stable solution since it is
more reliable. This is applicable when the rollback function is activated due the
fact that the last set of movements have increased the cost of the solution. The
Congestion factor take into account the congestion of the solution, following the
bounding box strategy. The Congestion is computed by the following formula:

Congestion =


∑

x,y
U2
x,y

nx∗ny(∑
x,y

Ux,y

nx∗ny

)2


k

(3.7)

where Ux,y is the number of bounding boxes covering the logic cell, k is a small
positive integer, and the whole chip consists of nx by ny logic cells.

In both the works [19] [20] theCongestion factor is introduced. This factor is
multiplied for the wiring cost used by VPR to estimate the cost of a swap elaboration
of the placement algorithm. In particular, this factor is modified between the first
and the second work on the aspects that in the seconds one it takes into account
also the empty logic cells in the swapping. The scope of this is to bring in the
middle of a congestion area some empty logic cells. Moreover, the assignment of
some parameter to calculate the wiring cost are changed between the two solutions

34

3.5 – Experimental Results

in order to improve the efficiency of the algorithm according with some experimental
results.

The code of these others two version was asked to the authors and tested as well.
Only one of the several versions received proved to be running with the proper cost
factor.

3.5 Experimental Results

The VPR algorithm is applied to several circuits in order to evaluate the capability
of this tool on the Atmel FPGA architecture. The circuits are synthesized as flat
netlist circuits using Precision RTL Synthesis. The flat attribute on the modules
of the circuit allows to flatten the design hierarchy. This is necessary because VPR
does not support the hierarchical circuits. Then EDIF description is given in input
to Figaro that place and route the circuit on the AT280E device. At this point the
Figaro project file is fed to the PURPLE platform.

During the run, for each circuit:

• The Front End block, extracts the data from the Figaro project file and give
a netlist description file

• A converter tool converts the netlist description from the format of the netlist
description file to the VPR netlist format

• VPR tool performs the placement

• A converter tool converts the output placement file of VPR in the position
description file.

• The Block End block creates the Figaro project file that implement the VPR
solution.

At the end of the run, Figaro is used to route the VPR solution. If the route success,
for both the project, the original and the one implementing the VPR solution,
the timing is evaluate using the Figaro Timing Analyzer. A preliminary set of
experiments show that the VPR solution, in most cases, is better in term of Delay
Longest path, see Table 3.2. These results are considerate preliminary for two reason:

• The placement of the IO, for the VPR solution, is not optimized. This could
improve the timing results for the path that involve an IO pin as endpoint of
the path.

• The Figaro Timing Analyzer tool is not completely reliable. To improve the
accuracy of the estimation the experiments should be analyzed by a different
timing analysis tool.

35

3 – Platform to Upgrade and Redo Placement Leading Efficiency

Circuit
Used logic Delay Longest path[ns]
resources VPR Figaro

b01 11 22.98 30.09
b02 8 20.49 29.52
b03 54 33.1 41.23
b06 13 33.64 37.85
b13 93 32.75 32.03

Table 3.2. Simple VPR test experiments

The experiments show that the circuit tested are not bigger than the 10% of the
FPGA. The test on larger circuit failed due the congestion of the VPR placement
solution. In fact, for circuits which occupied area is between 10% and 25% of the
total area of the device, Figaro was not able to route the VPR placement solution.

The cost factors taken into account in the VPR algorithm tends to place the
connected resource as much close as possible, as showed in Figure 3.4 a. Since the
limited routing resource in the Atmel FPGA architecture, Figaro is not able to
connect congested areas of the device, as showed in Figure 3.4 b. Several measures
are taken to try to avoid high density of used logic resource in restricted area of
the FPGA. The congestion solutions presented in the two works [19] [20] are used
for the un-routed circuits. The results have shown that the solution given by [20]
is better than the solution given by [19] but it is still not enough strong to allow
Figaro to route the placement solution.

The parameters of the total cost in Equation 3.1 and in the Congestion cost in
Equation 3.7 are changed in order to increase the weight of the Congestion in the
cost function. The parameters are scaling from the default values to the maximum
value that still guarantee the balancing with the other cost factors (wiring cost and
timing cost). For example, the value of λ in Equation 3.1 is decrease down to 0.2 in
order to maintain the minimum influence of the timing cost.

The last measure considering unoccupied logic cell. The objective is to force the
placement of empty logic cell close to the ones with hight fanout. This objective
is achieved increasing the weight of empty logic cell in selection of the core cell to
swap in the placement algorithm. The effect of this measure give support to the
Congestion one, as showed in Figure 3.4 c.

These changing are tested on a circuit implementing an acdc converter. The
circuit occupy the 22% of the logic resource of the ATF280E device.
The results of the experiments are shown in Table 3.3. The first three columns
show the cost parameters: λ in Equation 3.1, the nx and ny in Equation 3.7. The
fourth column shows the percentage of empty logic cell respect the total occupied
cells by the circuit, inserted in the most congested area. The last column shows

36

3.5 – Experimental Results

the route contentions given by Figaro after the routing step. The tests show that
the only modification of the costs parameters can not lead to the solution of the
route contentions. Although the changing of the parameters led to decrease the
contentions of about 50% the amount of total route contentions is still too high (465
contentions).
The measure of force the placing of empty logic cell in congestion areas is the most
efficient approach although it is not the definitive solution.

λ nx ny empty logic cell route contentions

0.5 Auto Auto 0 953
0.3 +10% +10% 0 651
0.3 +30% +30% 0 655
0.2 +10% +10% 0 465
0.3 +10% +10% 20% 370
0.2 +10% +10% 20% 250
0.3 +10% +10% 37% 73
0.2 +10% +10% 37% 120

Table 3.3. Routed contentions for acdc circuit

Figure 3.4. VPR solutions

We can conclude that the experiments showed that the best parameters to use
are:

• Area FPGA under test ≥30% more than the minimum required to fit the
design

37

3 – Platform to Upgrade and Redo Placement Leading Efficiency

• Timing-tradoff between bouding box minimization and delay minimization in
the placer around 0.3%

• The weight for the unused logic cell in the quantification of the alleviation of
congestion brought by an unused block should be almost the weight of an uses
logic cell.

3.5.1 Why does VPR not work properly for Atmel?

The experimental results show how VPR is not able to reach a good solution for
all the circuits under test. The mainly problem is the congestion factor. The VPR
solution seems to be too much congested for the architecture of Atmel. There are
several points that can cause this leak:

• VPR was developed for Altera and Xilinx architecture that are more complex
and powerful.

• From VPR support.

VPR takes into account some of the routing description in place-
ment. It is far too time consuming to make full use of detailed
routing information so instead, we chose to use simplified models of
routing during placement. As you can imagine, there are many dif-
ferent ways to simplify the routing model and the -place cost type
parameters affects which simplified model to use.

• VPR does not implement direct connections with the diagonal neighbors.

• VPR does not support the express bus in Atmel architecture.

• VPR does not support black-box, so it is not possible use optimized structure
like lpm elements that could decrease the routing between the placed logic
cells.

• VPR does not support 3-state IOs, so we have to define a ”fake” IO for the
enable signal of the 3-state IO, this increase the routing.

Moreover, VPR works normally with a packer tool. It is proved the efficiency of
the use of the cluster to improve FPGA speed and Density [27]. The logic cluster
”packed” different LUTs together followings some rules. The logic cluster are a
generalized version of the Logic Array Blocks used in Altera’s FLEX 8k and FLEX
10K parts and the Xilinx 5200 and Virtex FPGAs. With the logic cluster structure
the local routing is reduced by the packer, because the placement algorithm will
work on the clusters and the routing inside the cluster is ignored by the placer.

38

3.6 – Conclusion

So the complexity of the routing is reduced by the use of the cluster structure.
Unfortunately, the Atmel architecture does not support the cluster. This means
that more routing will effect the placement. The use of clusters and a more powerful
architecture of routing justify the choice of a simplified models during the placement
obtained also gain in time performance.

3.6 Conclusion

The PURPLE platform allows the use of others placement algorithms on Atmel
FPGA devices. The platform can work in parallel with Figaro tool in order to hook
the normal flow of the design implementation and use the features of the commercial
tool. The independence of the blocks inside the platform allows the use of different
placement engines. The use of VPR showed the importance of the estimation of
the routing capability for the placement solution. The congestion problems due the
fact that VPR was born for different and more powerful architectures lead to detect
the most critical points for a placement engine used on to Atmel FPGA devices.
Add some congestion metrics to the cost function of the placement code so that is
spreads out blocks in congested area could improve the efficiency of VPR.

39

Bibliography

[1] http://www.actel.com/products/milaero/rtpa3/default.aspx

[2] C. Carmichael, Triple Module Redundancy Design Techniques for Virtex FPGAs,
Xilinx Application Notes XAPP197, 2001.

[3] http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html

[4] , CNES feedback on the ATF280 presentation, Atmel FPGA User Group
Workshop, 3rd of March, 2010 ESTEC, http://spacefpga.atmel-nantes.fr/
spacefpga/files/Meetings/03march2010/P0.2_CNES_ATMEL\%20FPGA\

%20User\%20Group\%20Workshop\%20\textendash\%20ESTEC\%2003\

textendash03\textendash10.pdf

[5] , Thales Alenia Space feedback on the ATF280 presentation, Atmel
FPGA User Group Workshop, 3rd of March, 2010 ESTEC, http:

//spacefpga.atmel-nantes.fr/spacefpga/files/Meetings/03march2010/

P6_Workshop\%20ESA\%20ATF280E\textendashTAS\textendashF.pdf

[6] , Institut d’Astrophysique Spatiale feedback on the Atmel FPGA presentation,
Atmel FPGA User Group Workshop, 3rd of March, 2010 ESTEC, http:

//spacefpga.atmel-nantes.fr/spacefpga/files/Meetings/03march2010/

P6_Workshop\%20ESA\%20ATF280E\textendashTAS\textendashF.pdf

[7] M. Alderighi, A. Candelori, F. Casini, S. DÕAngelo, M. Mancini and
A. Paccagnella et al., SEU sensitivity of virtex configuration logic, IEEE T Nucl
Sci 52 (6) (2005), pp. 2462–2467.

[8] K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt and M. Wirthlin, SEU-
induced persistent error propagation in FPGAs, IEEE T Nucl Sci 52 (6) (2005),
pp. 2438–2445.

[9] FL. Kastensmidt FL, L. Sterpone, L. Carro, MS. Reorda,On the optimal design of
triple modular redundancy logic for SRAM-based FPGAs, Proceedings of design,
automation and test in Europe (DATE) 2005, vol. 2; 2005. p. 1290–5.

[10] B. Barcelin, N. Battezzati, DS. Codinachs, F. Decuzzi, F. Margaglia,M. Vi-
olante, ,Application–oriented SEU cross–section of processor soft core for Atmel
RHBD, IEEE Radecs 2010 [Accepted for publication]

[11] www.atmel.com

[12] Precision Synthesis Reference Manual, 2003c Update1, March 2004

40

Bibliography

[13] Rad Hard Reprogrammable FPGA, ATF280E, Advanced Information, Atmel
[14] AT40K IO Generator Guide, June 2002
[15] Figaro tool Help, Atmel
[16] Integrated Development System - Figaro Tutorial, June 2002
[17] PURPLE user guide, Decuzzi Filomena November 2010
[18] Application-oriented SEU sensitiveness analysis of Atmel rad-hard FPGAs, N.

Battezzati, F. Decuzzi, M. Violante, M. Briet, 15th IEEE International On–Line
Testing Symposium, 24–26 June, 2009, pp. 89–94

[19] Y. Zhou, H. Li, S.P. Mohanty, A congestion driven placement algorithm for
FPGA synthesis, In Proceedings of the International Conference on Field Pro-
grammable Logic and Applications, 2006,pp. 683–686.

[20] Y. Zhuo,H. Li,Q .Zhou,Y .Cai,and X. Hong,New timing and routability driven
placement algorithms for FPGA synthesis in Proc. GLSVLSI, 2007, pp. 570–575.

[21] M. Hutton,J.P. Grossman, J. Rose, and D. Corneil, Synthetic benchmark cir-
cuits for timing-driving physical design applications in Proc. Design Automation
Conf, ACM Press, 2002, pp.94–99

[22] P. Verplaetse, D. Stroobandt, and JV. Campenhout,Synthetic benchmark cir-
cuits benchmark circuits for timing-driven physical design applications, in Proc.
International Conference on VLSI, CSREA Press, 2002, pp.31–37

[23] V. Betz, J. Rose, A. Marquardt, Architecture and CAD for Deep-Submicron
FPGAs, Kluwer Academic Publishers, February 1999

[24] A. Marquardt,V. Betz, and J. Rose, Timing-Driven Placement for FPGAs,
ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
Monterey, CA, February 2000, pp. 203–213.

[25] V. Betz and J. Rose, ‘VPR: A New Packing, Placement and Routing Tool for
FPGA Research, Seventh International Workshop on Field-Programmable Logic
and Applications, London, UK, 1997, pp. 213–222.

[26] http://www.eecg.toronto.edu/~vaughn/

[27] V. Betz, J. Rose, A. Marquardt, Using Cluster-Based Logic Blocks and Timing-
Driven Packing to Improve FPGA Speed and Density, ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays, Monterey, CA, February
1999, pp. 37–46

41

Appendix A

Annex

42

 1

N. Battezzati, F. Margaglia, M. Violante

Politecnico di Torino, Dip. Automatica e Informatica, Torino, ITALY

F. Decuzzi, D. Merodio Codinachs

European Space Agency, ESA/ESTEC, Noordwijk, THE NETHERLANDS

B. Bancelin

Atmel Corporation, Nantes, FRANCE

35-WORD ABSTRACT:

Approximating SEU sensitiveness by the device cross-section for applications implemented in FPGAs is very pessimistic. We

propose and validate a static analysis approach to asses the application-oriented cross-section, providing evidence on a soft

processor core.

Corresponding and Presenting Author:

Niccolò Battezzati, Dip. Automatica e Informatica, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, ITALY,

phone: +39 011 564 7221, fax: +39 011 564 7099, email: niccolo.battezzati@polito.it

Session Preference: Single event effect 2: devices and integrated circuits

Presentation Preference: poster

Application-oriented SEU cross-section of a

processor soft core for Atmel RHBD FPGAs

 2

Abstract — Approximating SEU sensitiveness by the device cross-

section for applications implemented in FPGAs is very

pessimistic. We propose and validate a static analysis approach

to asses the application-oriented cross-section, providing evidence

on a soft processor core.

Index Terms — RHBD, FPGA, Single Event Upset (SEU), fault

injection, static analysis, processor.

I. INTRODUCTION

IELD Programmable Gate Arrays (FPGAs) that have the

capability of being reconfigured when already deployed

in the field are drawing more and more attention from

designers of space applications. On the one hand, re-

configurable FPGAs make possible fixing bugs when the

device is already deployed in a satellite. On the other hand, re-

configurable FPGAs are the enabling technology for

implementing the configurable computing paradigm, which is

gaining popularity as an effective mean to share the same

hardware resource among different applications or different

parts of the same application, or to upgrade a design as soon as

the user requirements change (e.g., to implement a new

transmission standard as soon as it is available).

Nowadays, re-programmable FPGAs can be SRAM-based

FPGAs, when the information defining the configuration of

the device (i.e. the configuration memory) is stored using

SRAM memory cells, or Flash-based FPGAs, when the

configuration memory is implemented resorting to floating-

gate memory cells.

As far as space applications have to survive to harsh

environments, where ionizing radiation may interact with

silicon devices and induce Single Event Effects, like Single

Event Upsets (SEUs) in the FPGA configuration and user

memory (i.e., flip-flops), and Single Event Transients (SETs)

in the FPGA routing resources, silicon vendors proposed

different solutions. On the one hand radiation-hardened

technologies [1] can be used to build robust devices, but they

have much higher cost and performance overhead than

Commercial-Of-The-Shelf (COTS) devices, and they are not

re-programmable. On the other hand it is possible to use

commercial devices and implement some hardening

techniques at the application level [2]. Some vendors, like

Xilinx, proposed to use COTS devices for mainstream

applications in conjunction with proper SEE mitigation

techniques that, by exploiting hardware/information

redundancy and memory scrubbing, can alleviate the SEE

problem [3]. Other vendors adopted configuration memory

cells that are less likely to undergo SEEs. Actel adopted

floating gate cells based on a 130 nm process that radiation

testing experiments performed so far shown to be insensitive

to heavy ions [4]. In the middle of these two approaches

Radiation-Hardened-By-Design (RHBD) [5] FPGAs offer a

robust device even if using the same technology as COTS

devices. Atmel developed RHBD configuration memory cells

and flip-flops that are less sensitive to ionizing radiation;

Xilinx is also developing an RHBD version of its Virtex-5

device that promises unprecedented level of immunity to

SEEs.

As far as Atmel RHBD devices are considered, although

robust against SEEs, they still have a not-null cross section.

The most recent product, the ATF280E has a susceptibility

threshold (LETth) of 30 MeV cm2/mg at Vcc min and

saturation cross-section of 3x10
-9

 bit
-1

. As a result, designers

must take into account the contribution of ionizing radiation

on such devices when evaluating the robustness of FPGA-

systems. As a matter of fact, designs make seldom use of the

whole configuration memory bits. Indeed, only a portion of

the entire configuration memory is programmed to implement

a given functionality. As result, in order to accurately predict

the robustness of FPGA-based systems, it is mandatory to

quantify the application-oriented sensitiveness of the device,

which can be defined as the number of configuration memory

bits that is sensitive to SEE for a certain application mapped

on the device.

In this paper we describe the tool, introduced in [6], we

developed for evaluating the application-oriented sensitiveness

of designs based on ATF280E devices. Moreover, we present

the results of the validation process we performed using fault

injection, discussing the achieved results. Finally, we present

the benefits stemming from the adoption of the application-

oriented sensitiveness analysis in evaluating the robustness of

a realistic soft processor mapped on the ATF280E device.

II. SEU CROSS-SECTION STATIC ANALYSIS

In order to perform a workload-independent analysis of the

configuration memory given a certain design (application), we

implemented a static SEU analysis algorithm. The algorithm is

based on the configuration memory bits (bitstream) analysis

and is aimed at detecting which bits are sensitive for the

application once upset. A bit is considered sensitive (or

critical) if a change in its value can induce modifications in the

implemented circuit that result in application failures. The

reliability is then estimated as the number of sensitive bits

over the total number of bits in the configuration memory.

The proposed flow is composed by two steps: the resource

usage analysis and the circuit sensitiveness analysis. The first

step extracts the programmed configuration bits from the

bitstream in order to identify which resources are actually

used. The second step provides the set of configuration bits

that are actually sensitive, on the basis of the considered

design and device architecture.

A. Resource Usage Analysis phase

The starting point of the first step is a generic bitstream of a

generic circuit. First of all, the data within the bitstream are

divided in two parts: the first one containing general

information about the device and the configuration mode and

the second one that describes the resources configuration. Data

contained in the latter are then divided according to the

resource type they program. The bits that configure such

resources are thus classified in two groups, logic controlling

and routing controlling bits.

In order to recognize used resources, the bitstream is split in

different windows, each containing the configuration data of a

programmed portion of the device. For each window are then

F

 3

detected the resources used to implement the design. In this

manner, the data of each window are again split in data blocks,

each of which contains the configuration bits of one resource.

Each resource is thus classified as used or not and the

correspondent data block is tagged accordingly.

The device is finally divided in sectors, defined as the set of

resources that:

 Results equally repeated within the entire device

structure.

 Contains all the logic resources that are interconnected

by local buses not interrupted by repeaters.

For example a sector could include 4x4 logic cells

surrounded by 4 horizontal and 4 vertical repeaters. Adjacent

cells are connected by means of direct hard-wires, while

longer connections are implemented by local buses. Repeaters

connect local buses of neighboring sectors. Global buses

(called Express) are used to connect far cells, spanning

through multiple sectors.

B. Circuit Sensitiveness Analysis phase

The second step of the proposed flow performs the actual

sensitiveness analysis of the application. A map is built,

containing the sectors, which the FPGA array is divided in,

and, for each resource type involved in the analysis, a tree

structure is created to model its architecture. Such a structure

is used to verify the criticality conditions for the configuration

bits that program a certain resource.

The algorithm runs on every sector with at least one

programmed resource. For each resource within the sector, the

tree structure of the correct type is filled with the data

extracted from the bitstream during the first step, verifying, for

each configuration bit, a set of rules that identify the

conditions for which an upset bit is critical. In general, a

configuration bit is considered critical if, once upset, at least

one of the following conditions is verified:

 it modifies the circuit functionality

 it modifies the circuit topology

 it modifies a signal that is an input for another used

resource.

The criticality can be further specified as internal or

external, depending on the fact that the upset bit causes a

modification in the resource it controls or to another resource.

While an internal criticality can be ineffective for the whole

system, in such a way that it could not be possible observing

its effect, an external criticality affects the entire circuit so the

considered bit is always classified as critical.

The internal criticality depends on the resource architecture.

To detect the internal criticality it is necessary to determine

the paths between the point within the resource architecture

controlled by the potential critical bit and a resource output.

For this reason, we described the internal architecture of the

considered resources defining a simple language, the Atmel

Resource Description (ARD) language. The description is

uniquely based on the FPGA cells architecture and is

completely independent both from the device size and from

the implemented design. The above mentioned tree structure is

built on the basis of this file and describes all the possible

paths between a point of the resource architecture and an

output. Multiple roots of the tree model the programmable

points of the resource, while the leaves are the outputs. The

internal nodes represent the conditions according to which the

fault may reach an output. So an internal node specifies the

bits that have to be configured in order to let the fault pass.

Fig. 1 depicts a simple example of a logic cell and the

correspondent tree for some of its programming bits.

Fig. 1 Logic cell architecture and correspondent tree structure.

An upset bit is considered internally critical either if it

changes the logic function of the resource it belongs to or it

propagates an error to an output of the resource it belongs to.

In the first case, the bit is directly classified as critical. This

change indeed corrupts the function implemented by the

resource, in such a way that it affects the whole application

behavior. In the second case, instead, in order to define

whether the bit is critical or not, the external criticality

conditions must be verified. In particular, the conditions for

which an internal criticality for logic or local routing bits

becomes an external criticality are:

 the output corrupted by the upset bit is connected to a bus

to which are connected other used resources

 the output corrupted by the upset bit is an input of

another used resource through a direct connection.

III. FAULT INJECTION VALIDATION

In order to validate the proposed algorithm, we developed a

fault injection platform for Atmel FPGAs in order to perform

dynamic analysis on circuits implemented in such devices and

compare the results with the ones obtained by static analysis.

The aim of this platform is to evaluate the actual effects of

SEUs in the configuration memory with respect to a

predefined workload for the implemented design.

The fault injection platform is composed by 3 modules, two

of which are hardware modules and one is software. Fig. 2

depicts the general architecture. The first module is a board

that hosts the Device Under Test (DUT). The FPGA is

programmable through an on-board EEPROM that can be

accessed by a USB hardware cable and the correspondent

software control interface. The second module is the

 4

Monitoring Board that hosts the Monitoring FPGA (MF).

These two modules are connected in order to have the test

clock and test reset generated by the MF sent to the DUT, and

the output of the DUT sent back to the MF. On the latter, a

copy of the Design Under Test is mapped along with a

comparing module that, clock cycle by clock cycle, compares

the outputs of the two designs. While the design implemented

in the DUT is corrupted by injecting faults in the configuration

memory, the design implemented in the MF is always correct

(golden design), thus providing the right outputs. As soon as a

discrepancy is detected, the injected fault is classified as

critical and we pass to the following one.

Fig. 2 Fault injection platform architecture.

The orchestration of the whole process is performed by an

automatic software tool running on the PC. The software is

composed by two components: the “Bitstream Corruption

Module” (BCM) and the “Injection and Comparison Module”

(ICM).

The BCM takes the golden bitstream as produced by the

Atmel tool chain, the fault list and a configuration file. The

bitstream corruptor generates a set of faulty bitstreams, each

of which contains an SEU fault, located in one of the

configuration bits, and a temporary file containing the names

of every faulty bitstream along with the corresponding fault

number in the reliability report.

The ICM has the control over the two FPGAs. It loads the

monitoring design (containing both the golden design and the

comparator) on the MF, it loads a bitstream on the DUT and

finally it controls the test process by enabling and disabling

the DUT master reset, resetting the monitoring design and

reading back the result of the test. Fig. 3 shows the flow

diagram followed to execute a fault injection campaign.

IV. EXPERIMENTAL RESULTS

A. Fault injection

In order to validate the proposed static analysis algorithm

we performed fault injection in a simple design, with both

combinational and sequential logic. The Monitoring Board is a

Xilinx development kit with a Virtex-II 1000 device. The

software we used to program the MF is a tool we already used

in [7], which is able to program the FPGA, reset its internal

registers and read back their value too. The DUT board has

been designed by Atmel and hosts an ATF280E device. The

software that programs it has been developed on the basis of

the Space Programmer tool by Atmel. It is able to erase and

program the on-board EEPROM, as well as to enable and

disable the FPGA reset in batch mode.

Fig. 3 Fault injection flow-diagram.

We first performed a static analysis of the circuit,

independent from the workload, to identify the sensitive bits;

we then injected faults in every bit identified as critical by the

static analysis and in a set of other 20.000 “not-critical” bits

randomly chosen. TABLE I depicts the obtained results. In

particular, for each resource type (Detailed Type) we report

the number of critical bits identified by the static analysis

(S.A.), the number of detected faults after the fault injection

campaign (F.I.) and the corresponding percentage. From this

experiment we can state that the static analysis is pessimistic,

as it overestimates the number of configuration memory bits

that are actually critical. However, the analysis is quite

accurate; indeed in four out of five cases about 63% of the

configuration memory bits identified as sensitive are actually

critical during fault injection experiments. Pessimistic

predictions for the Express–CC resources are due to the fact

that global routing spans over several sectors. In order not to

miss some critical bits, and keep low the memory usage of the

algorithm analyzing just one sector at a time, all the used

 5

global routing resources are considered critical, without

verifying the external criticality conditions. The set of critical

bits identified by the fault injection is completely contained in

the set of bits recognized as critical by the static analysis. This

means that no one of the about 20.000 randomly injected

faults is missed by the static analysis algorithm.

TABLE I

FAULT INJECTION RESULTS

Type Detailed Type S.A. [#] F.I. [#] Percentage [%]

Logic Core Cell 284 154 54.22

Routing Local - CC 36 22 61.11

Routing Express - CC 114 2 1.75

Routing H.R. 110 75 68.18

Routing V.R. 124 86 69.35

B. SEU-sensitiveness analysis for a complex processor core

Once verified the accuracy of the static analysis algorithm

we used it to evaluate the actual SEU sensitiveness for a

processor soft core. In particular we implemented the I8051

processor for the ATF280E FPGA and performed the analysis.

TABLE II shows the number of critical bits for every resource

type, logic Core Cells, local (Local-CC) and global (Express-

CC) buses, and for the Horizontal and Vertical Repeaters.

TABLE II

I8051 CRITICAL BITS

Type Detailed Type Critical Bits [#]

Logic Core Cell 448,458

Routing Local - CC 33,436

Routing Express - CC 96,586

Routing H.R. 142,099

Routing V.R. 140,133

We then compared several sensitiveness estimation metrics,

to analyze how application-oriented analysis differs from other

methods, based for example on the device cross-section.

TABLE III shows the sensitiveness, expressed as the percentage

of critical bits over the number of total bits in the

configuration memory, with respect to each analyzed metric.

In particular, we used four different methods. The first one

(Configuration bits) is based on the device cross-section and is

basically the number of bits in the configuration memory. The

second one (Programmed bits) is based on the number of

programmed bits, bits that assumes a value different from the

one in an empty bitstream. Finally we used the metric

estimated by the static analysis (Sensitive bits) and a slightly

more accurate version of the same, that takes into account

possible differences in the sensitiveness of bits programmed

with a „0‟ or with a „1‟. As reported in [6] and [8] we

considered the cells programmed with a „0‟ 50 times more

sensitive than the others. The results show how the first two

metrics are respectively too pessimistic and, worse, too

optimistic, thus not considering bits that are actually critical.

In the second two metrics, instead, we still obtain a pessimistic

result, as showed by the fault injection, that has the advantage

of being a conservative result, but much more realistic that in

the first case.
TABLE III

I8051 SENSITIVENESS ANALYSIS METRICS

Metric Sensitiveness [%]

Configuration bits 100.00

Programmed bits 10.66

Sensitive bits 49.26

Weighted sensitiveness 38.82

To put the obtained results into the perspective of a realistic

mission, we considered an L2 orbit and we evaluated two

possible scenarios. If the dependability analysis is performed

considering the whole configuration memory as sensitive, due

to the characteristics of the considered device, and the L2

orbit, according to CREEME‟96 we have that expected upset

rate is 1.25x10
-11

 upset/s. On the other hand, if the

dependability analysis is performed considering the

application-oriented analysis, and thus by taking into account

only sensitive bits for the processor core mapped on the

FPGA, the expected upset rate is 4.84x10
-12

 upset/s.

From this example we can see that by considering the whole

configuration memory worst-case prediction are obtained,

which are 2.5x more pessimistic than the predictions that can

be obtained by using application-oriented sensitivity analysis.

V. CONCLUSIONS

The SEU cross-section static analysis approach we

proposed has been evaluated with respect to dynamic analysis

performed by fault injection. Though being more pessimistic,

and then conservative, than dynamic analysis, it is able to

predict the actual application sensitiveness with an accuracy of

60% on the average and without any false negative. Moreover,

we adopted the proposed approach to analyze the SEU cross-

section of a complex soft processor, showing that it leads to an

estimation improvement of 2.5 times, considering a realistic

mission profile.

REFERENCES

[1] L. Rockett, D. Patel, S. Danziger, B. Cronquist, J.J. Wang, “Radiation

Hardened FPGA Technology for Space Applications”, Proceedings of the

IEEE Aerospace Conference, 3-10 March 2007, pp. 1 – 7.
[2] M. Berg, “Fault Tolerance Implementation within SRAM Based FPGA

Designs based upon the Increased Level of Single Event Upset
Susceptibility”, Proceedings of the 12th IEEE International On-Line Testing

Symposium 2006.

[3] C. Carmichael, “Triple Module Redundancy Design Techniques for Virtex

FPGAs”, Xilinx Application Notes XAPP197, 2001.

[4] http://www.actel.com/products/milaero/rtpa3/default.aspx

[5] R. Lacoe, “CMOS scaling, design principles and hardening-by-design

methodologies”; Proceedings of the IEEE NSREC Short Course, 2003.

[6] N. Battezzati, F. Decuzzi, M. Violante, M. Briet, “Application-oriented

SEU sensitiveness analysis of Atmel rad-hard FPGAs”, Proceedings of the

15th IEEE International On-Line Testing Symposium, 2009. IOLTS 2009.

[7] N. Battezzati, S. Gerardin, A. Manuzzato, D. Merodio, A. Paccagnella, C.

Poivey, L. Sterpone, M. Violante, “Methodologies to Study Frequency-

Dependent Single Event Effects Sensitivity in Flash-Based FPGAs”, IEEE

Transactions on Nuclear Science, Volume: 56 , Issue: 6 , Part: 1, 2009.

[8] N. Renaud, M. Briet, S. Hachad, G. Rouxel, J.-M. Vrignaud, “ATMEL
AT40KEL040 re-programmable FPGA SEU hardened configuration

memory”, Proceedings of the 8th European Workshop on Radiation and its

Effects on Components and Systems (RADECS 2004), 2004.

Appendix B

Annex

48

 1

N. Battezzati, F. Decuzzi, M. Violante

Politecnico di Torino

M. Briet

Atmel Corp.

Abstract—Radiation-hardened-by-design (RHBD) SRAM-based

FPGAs will play a crucial role in providing new generations of

satellites with reliable in-flight reconfiguration ability, which is

mandatory to enable the successful use of configurable

computing in space. RHBD SRAM-based FPGAs sensitiveness

against ionizing radiation is normally evaluated resorting to

radiation testing, which provides the device cross-section.

However, as a matter of fact, applications implemented on such

devices use only a portion of the available resources, and the

corresponding configuration memory. As a result, application-

oriented sensitiveness analysis tools are needed that, by analyzing

how the FPGA resources are actually used by a given application,

produce application cross-section that is a reliability figure more

accurate than device cross section.

This paper presents a novel application-oriented sensitiveness

analysis tool we are developing for the new generation of SRAM-

based FPGAs from Atmel: the ATF280E.

I. INTRODUCTION

FPGAs are becoming more and more interesting in space

and avionic applications, where reconfigurability, high

performance and low-power consumption can be fruitfully

used to develop innovative systems. However, missions take

place in a harsh environment, rich in radiation, which can

induce errors within electronic devices. Several approaches

have been developed in order to mitigate this problem, from

radiation-hardened technologies to make the more robust

devices [1], up to design hardening to make the more robust

applications implemented using non-robust devices [2]. On the

one side, radiation-hardened FPGAs implemented with ad-hoc

technologies offer a solid solution to the radiation problem but

they have several drawbacks. In particular, their cost with

respect to the Commercial-Off-The-Shelf (COTS) counterpart

is one or two magnitude order higher and the different

technology cannot reach the same area, speed and power

performance with respect to COTS devices. For this reasons,

even if less robust, it is becoming common practice to use

COTS devices [3]. On the other hand, hardening the design

using redundancy techniques on a COTS device can lead to a

higher cost in terms of area, power and speed. Moreover,

implementing known hardening techniques is not trivial,

especially for complex designs. No commercial tools, except

for [4], are available to the designer for automatically

implementing hardening techniques, thus giving the designer

the whole burden of hardening the circuits.

In the middle of these two solutions, hardened-by-design [5]

FPGAs offer a more robust device even if using the same

technology as COTS devices. In particular, redundancy is

added in the basic cells that compose the FPGA, thus being

transparent to the designer that can implement designs as in

rad-hard devices, but with the advantages of COTS ones.

However, the commercial technology, is still less robust then

the ad-hoc ones, and, even if redundancy is added to the basic

FPGA cells, particles over a certain energy can result in soft

errors [6]. For this reason, a dependability estimation process

is always needed in order to evaluate the actual reliability of a

design, taking into account the maximum environmental

conditions it can undergo on the basis of the application

specifications. It is common use to evaluate the application

reliability taking into account only the device reliability, i.e.

the robustness of the whole device, independently from the

design it implements. However, in the most cases, the

application does not occupy the whole device thus leading to

pessimistic reliability estimations that consequently may lead

to overdesigned applications.

The main contribution of this paper is a novel application-

oriented analysis tool aimed at evaluating the sensitiveness of

designs implemented on RHBD FPGAs from Atmel. The tool

analyzes designs implemented on such device to identify the

portion of the configuration memory that is sensitive, i.e., all

those configuration memory bits that, if affected by soft errors,

result in modifications to the FPGA resource that lead to

application failure. Thanks to this tool a precise design-

dependent dependability analysis can be performed, and

alternative design solutions can be evaluated easily.

In the following sections, after some brief background

information (Section II), we detail the proposed approach

(Section III and IV) and present experimental results used for

evaluating the tool (Section V). Finally, some conclusions and

considerations on future works are drawn (Section VI).

II. BACKGROUND

FPGA on-the-fly configurability is obtained through an on-

chip memory that can be volatile or non-volatile, storing

device-programming information inside the FPGA chip.

SRAM is the technology used for implementing volatile

configuration memories, as the ones used in Xilinx, Altera,

and Atmel devices, offering high speed and fine granularity

Application-oriented SEU sensitiveness analysis

of Atmel rad-hard FPGAs

F

 2

for reconfiguration. However, such memories are sensitive to

Single Event Upsets (SEUs) induced by radiation [7]. On the

other side, Flash technology is used in non-volatile

configuration memories, which being based on floating-gate

configuration memory cells, are less sensitive to upsets.

However, charge injection can produce transient faults that

may temporarily alter the correct operations of the circuit the

FPGA implements [8].

In SRAM-based FPGAs, both the configuration and the

user memory are sensitive to SEUs. To cope with this

problem, developers of space-oriented applications proposed

to make their devices more robust using RHBD techniques,

obtaining hardened devices according to hardware redundancy

techniques [9][10][11].

Several approaches have been then proposed to evaluate the

actual memory robustness, as described in [12]. In such

devices, however, the SEU cross-section is dominated by the

SRAM configuration cells, because user memory elements

like flip-flops or hardwired memories occupy a very small

area with respect to the whole configuration memory. For this

reason sensitiveness evaluation methods focus on this part of

the device.

Various approaches can be used in order to evaluate the

SEU sensitiveness of an SRAM-based FPGA. We can classify

them in three main groups. First of all, radiation testing [13]

that consists in irradiating a device with a particle beam and

evaluating the SEU cross-section usually reading back the

configuration memory looking for the upset cells. This method

emulates a real environment but is very expensive. Another

possible solution is fault injection [14] that consists in

emulating a fault within the configuration memory injecting it

manually. Such an approach is cheaper than radiation testing

but is very slow. Finally, static analysis methods [15] can be

used in order to evaluate which bits of the configuration

memory are actually sensitive to SEUs. These methods are

very fast but being independent from the input stimuli of the

circuit can provide a pessimistic estimation. In several cases

this feature can be useful, in order to be conservative and, if

carefully designed and with an accurate model of the device

such methods are a good approximation of the reality.

III. THE PROPOSED APPROACH: AN OVERVIEW

In this section we present an overview of the approach we

propose for evaluating SEU sensitiveness of applications

implemented in RHBD Atmel FPGAs. The algorithm is based

on the configuration memory bits (bitstream) analysis and is

aimed at detecting which bits are sensitive for the application

once upset. A bit is considered sensitive (or critical) if a

change in its value can induce modifications in the

implemented circuit that result in application failures. The

reliability is then estimated as the number of sensitive bits

over the total number of bits in the configuration memory.

Moreover, configuration bits are weighted according to their

actual sensitiveness that can change for technological reasons.

The proposed flow is composed by two steps: the resource

usage analysis and the circuit sensitiveness analysis. The first

step extracts the programmed configuration bits from the

bitstream in order to identify which resources are actually

used. The second step provides the set of configuration bits

that are actually sensitive, on the basis of the considered

design and device architecture. Fig. 1 depicts the proposed

flow, divided in the two above mentioned phases. In the first

step, the application bitstream is analyzed looking for the used

resources. In the second step, the actual sensitiveness of every

configuration bit is evaluated, on the basis of the device

architecture, modeled by means of a tree structure, a set of

rules, that define the conditions such that a bit can be

considered critical, and the set of used resources, identified in

the previous step.

bitstream

Architecture
descriptions

Resource
usage

analysis

Configuration
bits analysis

Criticality
conditions

Sensitive
bits report

Architecture
tree

generation

Step 1

Step 2

Fig. 1. The proposed flow

More in detail, during the sensitiveness analysis phase, the

configuration bits are classified according to the effect they

may provoke in the considered design if upset. In general,

using a tree representation of the resources architecture and a

set of conditions that defines the effect of a bit flip within the

resource, a configuration bit is classified as sensitive in two

cases. First of all, a bit is considered critical if, once upset, it

corrupts the function implemented by the resource it belongs

to. Moreover, a bit is also classified as critical if, once upset,

although not directly affecting the resource itself, the error it

produces can affect one of the connected resources.

IV. TOOL IMPLEMENTATION DESCRIPTION

As mentioned in the previous section, the software process

is composed by two main steps. The first step detects the

resources used to implement the design and it generates the

information about the used device area and the corresponding

 3

configuration memory. The output of the first step becomes an

input to the second one that evaluates the sensitiveness of the

desired circuit. In this section the two phases are detailed.

A. Resource Usage Analysis phase

The starting point of the first step is a generic bitstream of

a generic circuit. First of all, the data within the bitstream are

divided in two parts: the first one containing general

information about the device and the configuration mode and

the second one that describes the resources configuration. Data

contained in the latter are then divided according to the

resource type they program. Two types of resources are

considered in this analysis, logic cells and bus repeaters. Logic

cells implement combinational and sequential logic functions

and partially control local routing structures. Bus repeaters

regenerate and switch local and global connection signals thus

being at the base of the routing architecture of the FPGA.

In order to recognize programmed resources, the bitstream

is split in different blocks, each containing the configuration

data of one resource. Each resource is thus classified as

programmed or not and the correspondent data block is tagged

accordingly. In this manner, we can generate a map of the

device, with the information about programmed and un-

programmed resources.

Finally, the device map is divided in sectors, defined as the

set of resources that:

 results equally repeated within the entire device

structure

 contains all the logic resources that are interconnected

by local buses not interrupted by repeaters.

Fig. 2 shows a basic sector. In the example a 2x2 logic cells

matrix is surrounded by two repeaters for each side. Each

repeater connects local bus segments (thin lines) of two

neighboring sectors. Thick lines represent instead direct

connections among adjacent logic cells. The difference

between local buses and direct connections lies in the fact that

the first ones are programmable through configuration

memory bits while the second ones are not. Long global

interconnections are not represented in Fig. 2 not to confuse

the picture, but they can be considered as local

interconnections spanning two adjacent sectors.

A sector is considered used, and thus analyzed in the second

step, if at least one of its resources is programmed.

B. Circuit Sensitiveness Analysis phase

The second step of the proposed flow performs the actual

sensitiveness analysis of a circuit. Using the map described in

the previous section, the FPGA array is divided in sectors and,

for each resource type involved in the analysis, a tree structure

is created to model its architecture. Such a structure is used to

verify the criticality conditions for the configuration bits that

program a certain resource.

The algorithm runs on every sector with at least one

programmed resource. For each resource within the sector, the

tree structure of the correct type is filled with the data

extracted from the bitstream during the first step, verifying, for

each configuration bit, a set of rules that identify the

conditions for which an upset bit is critical. In general, a

configuration bit is considered critical if, once upset, at least

one of the following conditions is verified:

 it modifies the circuit functionality

 it modifies the circuit topology

 it modifies a signal that is an input for another used

resource.

Fig. 2. The elementary sector architecture

The criticality can be further specified as internal or

external, depending on the fact that the upset bit causes a

modification in the resource it controls or to another one.

While an internal criticality can be ineffective for the whole

system, in such a way that it could not be possible observing

its effect, an external criticality affects the entire circuit so that

the considered bit is always classified as critical. Indeed,

considering that designs mapped in RHBD devices usually do

not implement any additional hardening strategy, if an error

propagates outside a resource it can not be further masked,

unless by logical masking, which is not considered in a static

analysis.

The analysis algorithm acts on two levels. First of all, the

internal criticalities for the resource under test are identified.

In the second level are analyzed the connections between the

resource under test and the other ones, upgrading the internal

criticalities to external criticalities when required. This flow is

applied to every configuration bit of each resource in the

sector.

The internal criticality depends on the resource

architecture. To detect the internal criticality it is necessary to

determine the paths between the point within the resource

architecture controlled by the potential critical bit and a

resource output. For this reason, the Atmel Resource

Description (ARD) files are used to describe the internal

architecture of the considered resources. The description is

uniquely based on the FPGA cells architecture and is

completely independent both from the device size and from

the implemented design. The tool is flexible enough that new

kinds of resources can be added later, just describing their

architecture by an ARD file. Five kinds of elements have been

defined in order to describe a resource:

 SET: describes a programmable element whose

output exclusively depends on one input, that is

selected by its configuration bits

 OUT: element that labels a resource output

 4

 LUT: describes a programmable element whose

output depends on one or more inputs, according to a

function defined by its configuration bits

 Common path (CP): describes the path between two

points of the resource architecture

 Root (R): describes, for each programmable point, the

set of conditions that determine its criticality.

Once this file is parsed, for each resource type we create a

tree structure that describes all the possible paths between a

point of the resource architecture and an output. Multiple roots

of the tree model the programmable points of the resource,

while the leaves are the outputs. The internal nodes represent

the points of the architecture a signal has to traverse in order

to reach the output from the point controlled by the potentially

critical bit. An internal node thus specifies the bits that have to

be configured in order to let the signal pass. An upset bit is

considered internally critical if at least one of the following

conditions is verified:

1. it changes the logic function of the resource it belongs

to

2. it propagates an error to an output of the resource it

belongs to.

In the first case the bit is directly classified as critical. This

change indeed corrupts the function implemented by the

resource, in such a way that is not necessary to check if

another one is connected to it. In particular, the potential

directly critical bits are:

a. all the bits used to configure the resource in the

current design

b. all the bits that, if upset, cause a violation of an ARD

element definition.

In the second case, instead, in order to define whether the

bit is critical or not, the external criticality conditions must be

verified. In particular, the conditions for which an internal

criticality becomes an external criticality are:

1. the output corrupted by the upset bit is connected to a

bus to which are connected other used resources

2. the output corrupted by the upset bit is an input of

another used resource through a direct connection.

Fig. 3 shows an example of logic cell architecture, based on

ARD elements, highlighting the configuration bits that control

each of them. The picture does not represent the Atmel logic

cell but is a simplification that contains all the blocks needed

to explain the use of ARD elements involved in the proposed

analysis flow. Programmable switches are controlled by

configuration memory bits that can be critical. The SET

element in the upper part of the cell is configured by 4 bits that

can be active only one at a time. Each memory configuration

in which two or more of those bits are programmed at the

same time violates the SET definition thus being critical. The

same happens for the SET element on the lower part of the

cell. The LUT element is controlled by 8 bits that define the

output value on the basis of the three input signals. Every bit

of this element, if upset, is critical because changes the

function implemented by the LUT. In the example, the

sequential functions are implemented by hardwired Flip Flops

(FF) that are not programmable. Finally, the two bits in the

top-right corner of the cell are not directly critical, because,

once upset, do not necessarily induce an error in the resource.

If the LUT input they control is not used, indeed, an upset in

those bits is not critical. To determine if they are sensitive bits

or not, is thus necessary to verify if the error they induce can

be propagated toward one of the resource OUT elements. This

operation is performed traversing all the common paths in the

resource tree structure, until a leaf is reached. In particular, a

path is opened or closed according to the values of the

conditions in the root element correspondent to the bit under

analysis. If the error can propagate to an output, the external

criticality rules are then verified, in order to define whether the

bit is actually sensitive or not.

SET

SET

LUT

OUT OUT

FF
D

Q

Programmable
switch

Fig. 3. Example logic cell described with ARD elements

V. EXPERIMENTAL RESULTS

In order to evaluate the proposed algorithm we ran the tool

on several benchmark circuits of the ITC‟99 set [16]. Such

circuits have been designed for evaluating Design For

Testability (DFT) techniques but, because of the heterogeneity

of the logic structures they implement, can be very useful for

validating and stimulating the algorithm we propose with real

designs. The circuits we used range from simple gate sets up

to complex processor cores.

As a case study we selected two RHBD FPGA architectures

from Atmel Corporation, the AT40KEL040 and the ATF280E.

We then implemented the ITC circuits on one device from

both the two families using the FIGARO tool presented in

[17]. Table I details the characteristics of the benchmark

circuits implemented in each device, as number of occupied

logic cells, flip flops and routing resources (local buses).

After implementing the benchmark circuits in the two

devices, we analyzed the produced bitstreams with the

proposed algorithm. Besides validating the approach against

real and complex designs, this operation allows also

comparing different sensitiveness analysis strategies. The

SRAM bits, even if hardened-by-design, over a certain

radiation energy become sensitive and the mitigation

techniques can fail. For this reason they are the real critical

points of the application and should be taken into account

during a reliability estimation process. In particular we

compared three possible metrics for evaluating design

 5

sensitiveness: the percentage of programmed bits in the

configuration memory, the percentage of used resources, as

the set of logic and routing ones, and the percentage of

weighted sensitive bits as produced by the proposed approach.

In Table II we present the results of the three sensitiveness

estimation strategies obtained on the implemented benchmarks

from ITC‟99. The percentage of programmed bits is simply

the ratio between the number of bits set to „1‟ within the

design‟s bitstream and the total number of bits in the

configuration memory. The percentage of used resources is

obtained by the reports of the FIGARO tool. The result of the

proposed algorithm is instead expressed by the formula:

tot

SS

b

bb
sens minmax

where bSmax is the number of sensitive bits with a higher

probability to be upset and bSmin is the number of sensitive bits

with a lower susceptibility to upset. The sensitiveness factor

() is then defined as the ratio between the sensitiveness of the

most sensitive bits and the sensitiveness of the least sensitive

ones, as expressed in the following formula:

},min{

},max{

10

10

ww

ww

where w0 is the sensitiveness of configuration SRAM cells

containing a „0‟ (not programmed) and w1 is the sensitiveness

of configuration SRAM cells containing a „1‟ (programmed).

Indeed, as reported in [18], for technological reasons un-

programmed configuration cells are 50 times more sensitive

than programmed ones.

In this scenario, the metric based on the number of

programmed bits leads to completely unrealistic estimations,

leaving out all those bits that, even if not used, can induce

misbehaviors. Moreover, just these bits are the most sensitive.

On the other hand, resource usage estimation based on

FIGARO reports provides a still rough result. It is better than

the first one because it intrinsically takes into account both

programmed and not programmed bits, but can not provide a

fine analysis of the actual sensitiveness, not being able to tell

apart the contribution of programmed and not programmed

bits. Finally, the finest estimation is provided by the proposed

approach, that considers only really critical bits and it can also

weight them according to their actual measured sensitiveness.

In particular, the reader can observe how the last benchmark

design, built as a chain of 40 B08 circuits, occupies almost the

entire logic area of the used AT40KEL040 device; however,

the number of sensitive logic bits estimated by the proposed

analysis flow is more than 25% lower than the number of used

logic resources. Indeed, it is not completely correct estimating

the actual design sensitiveness with respect to used resources

because critical parts of the FPGA are the configuration bits

and not the logic and routing resources themselves. For this

reason, the approach we have proposed evaluates the

application SEU cross-section on the basis of actually critical

configuration bits.

In the end, Table III shows the computation time requested

by the developed tool to perform the analysis on the proposed

benchmark circuits.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we developed a novel software flow for

evaluating the actual SEU sensitiveness of designs

implemented in RHBD SRAM-based FPGAs. RHBD FPGA

applications still need reliability estimation and, in order to be

as more precise as possible and not overdesign the application,

an accurate analysis of the design is needed. The approach we

propose is based on static analysis, that is faster and cheaper

than radiation testing and fault injection techniques. Moreover

it provides a more conservative estimation. Experimental

results proved the effectiveness of the proposed flow on both

AT40KEL040 and AT280E Atmel devices highlighting the

differences between a rough evaluation based on resource

usage estimation and a more accurate method based on

configuration bits analysis.

Future works will be aimed at developing a fault injection

platform for validating the proposed approach and integrating

it to perform dynamic analysis.

REFERENCES

[1] L. Rockett, D. Patel, S. Danziger, B. Cronquist, J.J. Wang, “Radiation

Hardened FPGA Technology for Space Applications”, Proceedings of the
IEEE Aerospace Conference, 3-10 March 2007, pp. 1 – 7.

[2] M. Berg, “Fault Tolerance Implementation within SRAM Based FPGA

Designs based upon the Increased Level of Single Event Upset
Susceptibility”, Proceedings of the 12th IEEE International On-Line Testing

Symposium 2006.

[3] A.H. Johnston, “Radiation effects in advanced microelectronics
technologies”, IEEE Transactions on Nuclear Science, Volume 45, Issue 3,

Part 3, June 1998, pp. 1339 – 1354.

[4] C. Carmichael, “Triple Module Redundancy Design Techniques for Virtex
FPGAs”, Xilinx Application Notes XAPP197, 2001.

[5] R. Lacoe, “CMOS scaling, design principles and hardening-by-design

methodologies”; Proceedings of the IEEE NSREC Short Course, 2003.
[6] J. E. Knudsen, L. T. Clark, “An Area and Power Efficient Radiation

Hardened by Design Flip-Flop”, IEEE Transactions on Nuclear Science,

Volume 53, Number 6, December 2006, pp. 3392 – 3399.
[7] JEDEC standard JESD89, Measurement and Reporting of Alpha Particles

and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices,

Aug. 2001.
[8] N. Battezzati, S. Gerardin, A. Manuzzato, A. Paccagnella, S. Rezgui, L.

Sterpone, M. Violante, “On the Evaluation of Radiation-Induced Transient

Faults in Flash-Based FPGAs", Proceedings of the 14th IEEE International
On-Line Testing Symposium, 7-9 July 2008, pp.135-140.

[9] Z. Huang, H. Liang, “A New Radiation Hardened By Design Latch for

Ultra-Deep-Sub-Micron Technologies”, Proceedings of the 14th IEEE
International On-Line Testing Symposium 2008, pp. 175 – 176.

[10] L. Jacunski, S. Doyle, D. Jallice, S. Haddad, T. Scott, “SEU Immunity: The

Effects of Scaling on the Peripheral Circuits of SRAMs”, IEEE
Transactions on Nuclear Science, Volume 41, Number 6, December 1994,

pp. 2272 – 2276.
[11] T. Calin, M. Nicolaidis, R. Velazco, “Upset Hardened Memory Design for

Submicron CMOS Technology”, IEEE Transactions on Nuclear Science,

Volume 43, Number 6, December 1996, pp. 2274 – 2278.
[12] R.N. Nowlin, C.S. Begay, R.R. Parker, M.P. Garrett, T.D. Penner,

“Radiation Hardness of Hardened-By-Design SRAMs in Commercial

Foundry Technologies”, Proceedings of IEEE Radiation Effects Data
Workshop, July 2006, pp. 136 – 143.

[13] M. Alderighi, F. Casini, S. D'Angelo, F. Faure, M. Mancini, S. Pastore,

G.R. Sechi, R. Velazco, “ Radiation test methodology for SRAM-based
FPGAs by using THESIC+”, Proceedings of the 9th IEEE On-Line Testing

Symposium, 7-9 July 2003, pp. 162.

[14] M. Alderighi, F. Casini, S. D'Angelo, M. Mancini, S. Pastore, G.R. Sechi,
“Evaluation of Single Event Upset Mitigation Schemes for SRAM based

FPGAs using the FLIPPER Fault Injection Platform”, Proceedings of the

 6

22nd IEEE International Symposium on Defect and Fault-Tolerance in

VLSI Systems, 26-28 September 2007, pp. 105 – 113.
[15] L. Sterpone, M. Violante, “Static and Dynamic Analysis of SEU Effects in

SRAM-Based FPGAs” Proceedings of the 12th IEEE European Test

Symposium, 20-24 May 2007, pp. 159 – 164.
[16] D. Bhovsar, “Itc 99 panels”, IEEE Design & Test of Computers, Volume

16, Issue 4, Oct.-Dec. 1999, pp. 96 – 99.

[17] K. Nasi, T. Karouhalis, M. Danek, Z. Pohl, “FIGARO - an automatic tool
flow for designs with dynamic reconfiguration”, Proceedings of the

International Conference on Field Programmable Logic and Applications,

2005. 24-26 Aug. 2005, pp. 590 – 593.
[18] N. Renaud, M. Briet, S. Hachad, G. Rouxel, J.-M. Vrignaud, “ATMEL

AT40KEL040 re-programmable FPGA SEU hardened configuration

memory”, Proceedings of the 8th European Workshop on Radiation and its
Effects on Components and Systems (RADECS 2004), 2004.

TABLE I
BENCHMARK DESIGNS CHARACTERISTICS ON ATMEL DEVICES

TABLE II
COMPARISON BETWEEN DIFFERENT SENSITIVENESS ESTIMATION STRATEGIES

TABLE III
PROPOSED METHOD EXECUTION TIME FOR PROPOSED BENCHMARK CIRCUITS

Circuit AT40KEL040 [ms] AT280E [ms]

B01 0.028 0.100

B03 0.084 0.116

B04 0.172 0.624

B08 0.112 0.152

B11 0.136 0.432

B12 0.228 0.576

B14 0.436 1.780

B08_chain 0.452 1.248

Circuit
AT40KEL040 AT280E

Logic cells[#] Flip Flops[#] Routing resources[#] Logic cells[#] Flip Flops[#] Routing resources[#]

B01 11 10 20 13 10 43

B03 58 34 127 65 34 158

B04 176 66 669 185 66 761

B08 60 21 239 79 21 306

B11 139 35 592 152 35 606

B12 347 108 1335 420 108 1676

B14 1302 215 7020 1651 215 10233

B08_chain 1923 840 6298 1948 840 7000

Circuit

AT40KEL040 AT280E

Programmed

bits[%]

Figaro

resources[%]

Weighted

Sensitiveness[%]

Programmed

bits[%]

Figaro

resources[%]

Weighted

Sensitiveness[%]

B01 0.07 0.32 0.22 0.01 0.07 0.05

B03 0.36 1.79 1.09 0.07 0.33 0.20

B04 1.17 6.71 4.15 0.20 1.16 0.80

B08 0.46 2.33 1.43 0.10 0.48 0.31

B11 0.98 5.57 3.44 0.17 0.77 0.60

B12 2.50 13.20 8.03 0.48 2.61 1.62

B14 9.42 58.23 33.98 2.03 12.77 7.78

B08_chain 14.32 68.88 42.64 2.40 11.58 7.46

Appendix C

Annex

55

Use of macros for At40k FPGAs

Study about the area and reliability optimization

DATA AUTHORS REVISION

26/01/2010
Decuzzi Filomena

Merodio Codinachs David
1.0

Reference documentation
[1] Atmel, “AT40K Macro Library”, June 2002
[2] Decuzzi Filomena, Massimo Violante, “Configuration memory analyzer tool”

Introduction
 This study is aimed at analyzing the performance of the use of macros for the
AT40k family of FPGAs. With respect to [1] the study is performed on dynamic
macros. These ones, differently from functional macros, are designed to allow user
specification of any desired functionality attached as an attribute, via an equation
string on the symbol. Contrary to the description in [1] of the macro library for the
AT40K family, the FGEN2xx components are not used to implement a circuit.
 However the use of FGEN2xx and the other macros is allowed by means of
the Figaro’s “macro generator”. This tool allows designers creating their user-defined
macros by specifying parameters and storing them in their own user libraries.

Dynamic Macro
 The use of macros gives the user better control over the implementation of
specific functions in a single core cell. It can also be used to simplify the design entry
process. According to [1] the dynamic macros available for the At40k FPGAs are
showed in Table 1.

Logical
Function

Description

FGEN1 n input function generator (1 ≤ n ≤ 4)
FGEN1F n input function generator with combinatorial feedback (1 ≤ n ≤ 3)
FGEN1FT n input function generator with combinatorial feedback followed by tri-state

buffer (1 ≤ n ≤ 3)
FGEN1R n input function generator followed by a register (1 ≤ n ≤ 4)
FGEN1RF n input function generator with registered feedback (1 ≤ n ≤ 3)
FGEN1RFT n input function generator with registered feedback followed by tri-state

buffer(1 ≤ n ≤ 3)
FGEN1RT n input function generator followed by a register and tri-state buffer (1 ≤ n

≤ 4)
FGEN1T n input function generator followed by a tri-state buffer (1 ≤ n ≤ 4)
FGEN2 Two n input function generators (1 ≤ n ≤ 3)
FGEN2F Two n input function generators with combinatorial feedback on 1-output(1

≤ n ≤ 2)
FGEN2FT Two n input function generators with combinatorial feedback followed by

tri-state buffer on 1-output (1 ≤ n ≤ 2)
FGEN2R Two n input function generators with 1-output registered and the other

combinatorial (1 ≤ n ≤ 3)
FGEN2RF Two n input function generators with 1-output registered and feedback (1

≤ n ≤ 2)
FGEN2RFT Two n input function generators with 1-output registered, tri-stated and

feedback (1 ≤ n ≤ 2)
FGEN2RT Two n input function generators with 1-output registered and tri-stated (1

≤ n ≤ 3)
FGEN2T Two n input function generator with 1-output tri-stated (1 ≤ n ≤ 3)
MGEN Two 3-input function generators
MGENR Two 3-input function generators with 1-output registered
MGENRT Two 3-input function generators with 1-output registered and tri-stated
MGENT Two 3-input function generator with 1-output tri-stated

Table 1: Logical Function

The study shows that the logical functions FGEN2xx and MGENxx are not used
neither during the synthesis phase nor the place and route one. In particular, in the
technology library of Precision only the FGEN1 macro is defined; although the Figaro
tool is able to use other macros of FGEN1xx kind during the placement step.
In this way Figaro performs some optimization like using only one FGEN1R macro
instead two FGEN1 macros produced by Precision, in order to implement a
combinational function followed by a FFD.

Use of the FGEN2 MACRO
In some cases, two FGEN1 macros can be optimized in one FGEN2 macro; in

particular, if the resulting functions use at most 3 inputs this substitution is possible
and brings to a 100% area improvement (see Figure 1). Table 2 shows all the different
configurations for that allow the use of one FGEN2 macro in place of two FGEN1
macros. Black dots represent the function inputs, while white circles are the functions
themselves. Each input is connected to the functions it feeds by means of an arrow.

Purpose of study
The purpose of this study is to illustrate the improvements that would be

brought using FGEN2xx macros. MGENxx macros are out of the scope of this report.
 The analysis and the comments are made on the results of:

• Figaro statistics
• Memory usage and criticality from Susanna
• Use of logic cell from Susanna

FGEN1

FGEN1

FGEN2

Figure 1: Optimization scheme

Table 2: Configurations enabling the FGEN1 to FGEN2 substitution

G= A*B
H=A+B

Experimental results
The study has been completed with the analysis of three circuits, showing the

application of the ideas explained before. For each circuit under test statistics about
the device resources usage and configuration memory sensitivity are reported. The
configuration memory is analyzed by the Susanna tool [2] in order to detect the
critical bits and the occupied area of the device. The results are organized in three
tables:

• Table A: Figaro statistic
• Table B: Memory usage and criticality from Susanna
• Table C: Use of logic cell from Susanna

Table A summarizes the static usage of the device provided by the Figaro statistics
file. Table B shows the configuration memory usage, in order to implement the
design, and the results of the static analysis as the number of critical bits, then
classified on basis of the resources they belong to.

Table C shows the task of the critical Core Cells. They are mainly classified as
programmed or not programmed. A not programmed Core Cell is critical if a bit flip
in its configuration bits induces an error on a used resource. Besides, the programmed
Core Cells are classified according the implemented function. In particular are
reported the Routing Core Cells, that use the LUT to perform the routing.

And-Or circuit

The first circuit implement a couple of combinational gate with shared inputs.

Figure 2 shows the circuit.

Figure 2: And-Or circuit

 The implementation of this circuit needs two Core Cells to implement the
gates in two distinct resources where each Core Cell uses only one LUT to perform
the function. While the optimized implementation use a user-defined FGEN2 macro,
where the output are:

 AND_OR macro functions

The two designs are synthesized and the relative bitstreams are analyzed by Susanna.
Table A-1 shows that the used Logic Cell is only one in the optimized implementation

versus the 2 Core Cells used in the original one. This area saving corresponds to a
decrease of programmed bits in the configuration memory. Table B-1 shows that the
sensitive bits for the CCs estimated using Susanna decrease by 15 bits while the
programmed bits decrease by only 3 bits.

 Original Optimized
Number of Macros 6 5
Number of IO Macros 4 4
Number of Logic only Macros 2 1
Number of used Logic Cells 2 1
Number of Flip-Flops 0 0
Number of Gates 2 1
Table A-1:Figaro statistics

 Original Optimized
Total programmed bits 15 12
Total sensitive bits 52 29

CC’s bits 44 29
HR’s bits 8 0
VR’s bits 0 0

Table B-1: Susanna reliability estimation

Table C-1: Core Cell functions

 Original Optimized
Total number of critical CCs 2 1
Programmed critical CCs 2 1
 Used for Routing 0 0

Using the LUT 0 0
 Used for Logic 2 1

 Used for Logic and Routing 0 0
Not Programmed critical CCs 0 0

Bits_counter circuit
The second used circuit implements a bits counter. Figure 3 shows the RTL

schematics. The counter block implements a 4 bits counter. Figure 4 shows the
technology implementation after the synthesis, reported by Precision.

Figure 3: Bits_counter RTL schematic

Figure 4: Counter technology schematic

During the place and route phase Figaro performs an optimization using
FGEN1R macros to implement each couple of FGEN1 and FDRA given by Precision.
The implemented circuit occupy 16 Core Cells for the logic. In particular, the counter
occupies 5 Core Cells, where 4 CCs implement FGEN1R macros and 1 a FGEN
macro; so each CC use only one LUT.

The optimization joins together the two combinational functions that share two
inputs and one FDRA, as highlighted in Figure 4. In this case the optimization is
aimed at evaluating the device cross-section with different use of logical resources. In
fact, although the macro joins two combinational functions, the number of used CCs
depends on the implemented DFF, because the Core Cell architecture allows to
register only one LUT output. By means of a second FGEN2R macro the DFF for the
second LUT of the first macro and the inv component are implemented in the same
Core Cell.

The functions in the two FGEN2R macros are the following:

 MACRO1CLK_COUNT macro functions

 DFF_NOT macro functions

Table A-2 and Table B-2: Susanna reliability show how the optimization,

even if doesn’t reduce the amount of used resources to implement the logic, in terms
of number of CCs, it reduce the amount of sensitive configuration bits by means of a
redistribution of the logic in the CCs. In fact, the optimization leads to occupy as
much as possible of the capability of a logic cell. For this reason the amount of
configuration data not directly used to implement the function, but that surround the
logic and could induce an error on it, is thus reduced.

The results in Table B-2 shows that for the optimized circuit the amount of
sensitive bits for the Core Cells is reduced even on this small circuit that occupies less
then 1% of the total FPGA area. Bigger circuits could offer a much higher possibility
of optimization.

 Original Optimized
Number of Macros 27 27
Number of IO Macros 14 14
Number of Logic only Macros 13 13
Number of used Logic Cells 16 16
Number of Flip-Flops 12 12
Number of Gates 1 1
Table A-2:Figaro statistics

 Original Optimized
Total programmed bits 232 223
Total sensitive bits 977 969

CCs 740 727
HRs 144 131
VRs 93 111

Table B-2: Susanna reliability estimation

Table C-2: Core Cell functions

 Original Optimized
Total number of critical CCs 25 28
Programmed critical CCs 19 19
 Used for Routing 6 6

Using the LUT 3 2
 Used for Logic 10 9

 Used for Logic and Routing 3 4
Not Programmed critical CCs 6 9

G= B*!C+A*!B*C+!A*B (.FF)
H= A*!C+!A*C'

G= A (.FF)
H=!B

Multiple bits_counter circuit
The third case of study is composed by a set of three circuits bits_counter

described above and a set of four AND gate that perform the logic product of the
outputs of the first two circuits.

In this case the optimization is still performed on two logical functions
belonging to the counter circuit and, moreover, between one DFF t and one AND
gate used for the outputs. The functions of the two FGEN2R user macros are the
following:

 MACRO1CLK_COUNT macro functions

 FF_AND macro functions

The optimized circuit use 2 Core Cells less than the original one to implement the
logic, see Table C-3. This result leads to a decrease of more than 6% of criticality
estimated by Susanna on 1.31% of critical area of the configuration memory, see
Table B-3: Susanna reliability estimation. This reliability gain is underestimated
because the optimized implementation uses a number of logic resources to perform
routing larger than the original one. Different trials have showed that a programmed
LUT have a wide impact on the reliability of the device. Table C-3 shows than the
CCs programmed to perform the routing are 9 in the optimized version versus 3 of the
original one.

G= B*!C+A*!B*C+!A*B (.FF)
H= A*!C+!A*C'

G= A (.FF)
H= B*C

 Original Optimized
Number of Macros 77 75
Number of IO Macros 34 34
Number of Logic only Macros 43 41
Number of used Logic Cells 46 50
Number of Flip-Flops 36 36
Number of Gates 7 5
Table A-3: Figaro statistics

 Original Optimized
Total programmed bits 758 780
Total sensitive bits 3721 3487

CCs 2701 2555
HRs 491 370
VRs 529 562

Table B-3: Susanna reliability estimation

Table C-3: Core Cell functions

Conclusions
 The different experiments show the advantage of the use of optimized macro
in terms of area and sensitiveness. In particular, for the And_or and the Multiple
bits_counter circuits the use of FGEN2xx macro lead to both area and estimated
criticality reduction. While the Bits_counter circuit shows that though the use of
FGEN2xx doesn’t modify the area occupied from the logic it takes advantage on the
cross-section.

Possible causes
On of the possible causes of such a sub-optimal behaviour of the Precision-

Figaro flow is that the FGEN2xx macros are not described in the technology library
used by Precision to perform the synthesis. In fact, the command get_libs_cells
doesn’t show dynamic macros other than FGEN1.

Future works
Developing a tool to automatically explore the circuit netlist looking for

possible optimizations, it would be possible to predict the real impact of the ideas
illustrated in this study, also in the case of realistic designs.

 Original Optimized
Total number of critical CCs 357 226
Programmed critical CCs 63 65
 Used for Routing 20 24

Using the LUT 3 9
 Used for Logic 30 25

 Used for Logic and Routing 13 16
Not Programmed critical CCs 294 161

Appendix D

Annex

66

Study on the Optimization of Circuits

Implemented in Atmel FPGAs

Filomena Decuzzi, David Merodio Codinachs
ESA/ESTEC

Niccolò Battezzati
Politecnico di Torino

March 15, 2010

1 Introduction

According to the analysis reported in [1], we developed an automatic process to
analyze EDIF netlists of realistic circuits implemented in Atmel FPGAs and to
report possible optimizations that can be taken into account before the map-
ping step. The analysis process has been developed on the basis of the Polito
Automatic Hardening Tool (PAHT).

In particular, the EDIF netlist generated by Mentor Precision RTL tool [2]
is analyzed by PAHT, identifying all the possible pairs of instances that could
be optimized substituting an FGEN2xx macro. The pairs of instances to be
optimized are chosen in order to maximize the final number of optimizations.

2 Experimental results

We evaluated the process on a set of benchmark circuits, from simple combina-
tional ones up to complex processors.
The first designs have been taken from the ITC’99 benchmark [3]. Table 1 re-
ports their name and the respective description. The EDIF netlist has been
mapped in an AT40K device using Atmel Figaro ids8.2.2 tool. Besides, we ana-
lyzed the Intel 8051 micro-controller core and the Leon2 core without the cache
memory, mapping the EDIF netlists in an ATF280E device using Atmel Figaro
ids9.0.2 tool.

We then analyzed the EDIF netlists by means of the automatic process based
on the PAHT tool, independently from the device they are mapped in. The re-
sults are presented in Table 2 for the designs mapped on the AT40K and in
Table 3 for the cores mapped on the ATF280E.
For each analyzed circuit we report the total number of Core Cells used both
for implementing routing and logic (All CCs), the number of Core Cells used

1

Circuit Name Description
b01 FSM that compares serial flows
b02 FSM that recognizes BCD numbers
b03 Resource arbiter
b04 Compute min and max
b05 Elaborate the contents of a memory
b06 Interrupt handler
b07 Count points on a straight line
b08 Find inclusions in sequences of numbers
b09 Serial to serial converter
b10 Voting system
b11 Scramble string with variable cipher
b12 1-player game (guess a sequence)
b13 Interface to meteo sensors
b14 Viper processor (subset)

Table 1: ITC’99 benchmark circuits

to implement just netlist logic instances (Logic CCs), the number of memory
elements (FFs) and the percentage of the Logic Area computed before the op-
timization analysis (Pre-OPT L.A.). These data have been produced by the
Atmel Figaro tool used to perform the implementation. Finally we report the
area gain, if the optimizations identified by the PAHT tool would be imple-
mented. For designs that occupies a relevant portion of the FPGA area, the

AT40K Figaro ids8.2.2 Analysis

Circuit All CCs [#] Logic CCs [#] FFs [#] Pre-OPT L.A. [%] Area gain [%]
b01 11 11 10 0.48 9.09
b02 8 8 8 0.35 25.00
b03 58 54 34 2.34 5.56
b04 176 119 66 5.16 5.04
b05 225 144 36 6.25 18.06
b06 14 13 11 0.56 15.38
b07 117 74 45 3.21 12.16
b08 60 58 21 2.52 8.62
b09 48 43 28 1.87 6.98
b10 58 56 24 2.43 12.50
b11 143 118 35 5.12 12.71
b12 347 298 108 12.93 10.74
b13 105 66 60 2.86 4.55
b14 1299 905 215 39.28 10.28

Table 2: Optimization results

optimizations of the Logic Core Cells could lead to a maximum gain of about

2

ATF280E Figaro ids9.0.2 Analysis

Circuit All CCs [#] Logic CCs [#] FFs [#] Pre-OPT L.A. [%] Area gain [%]
I8051 10179 7867 1334 54.63 8.91
leon2

6195 5556 1264 38.58 14.38
(no cache)

Table 3: Optimization results

15% for the Leon2 processor with an average gain of 10%.

3 Conclusions

In conclusion, the automatic analysis process developed led to evaluating pos-
sible area optimizations for circuits implemented in Atmel FPGAs. Realistic
circuits have been analyzed as case study and the results show that an average
10% gain can be achieved on relevant circuits with a peak of about 15% on the
Leon2 processor core.

References

[1] Filomena Decuzzi, David Merodio Codinachs, Use of macros for At40k FP-
GAs, 2010.

[2] Mentor Precision RTL Synthesis 2007a3.40EM Atmel.

[3] Various authors, ITC’99 Benchmark homepage:
http://www.cerc.utexas.edu/itc99-benchmarks/bench.html, Benchmark
Circuits, 1999.

3

