MULTI-THREADED PROCESSOR FOR SPACE APPLICATIONS 1

Multi-threaded processor for

space applications
Final Report on ESA contract 4000106331

Chris Jeshope, Jian Fu and Qiang Yang

Techne
Consulting



Multi-threaded processor for space applications | 2

Table of Contents

1 EXECUTIVE SUMMARY 3
2 IMPLEMENTATION OF PRIORITY THREADS IN MGSIM 5
2.1 BACKGROUND AND MOTIVATION 5
2.1.1 THE MICROGRID 5
2.1.2 CONCURRENCY AND CONCURRENCY MANAGEMENT IN THE MICROGRID 5
2.1.3 REAL-TIME AND MULTI-CORE SYSTEMS 6
2.1.4 RESEARCH ISSUES 7
2.2 IMPLEMENTING PRIORITY IN THE MICROGRID 8
3 EXPERIMENTAL RESULTS FOR REAL-TIME TASKS IN MGSIM 12
3.1 SYNTHETIC BENCHMARKS 12
3.2 SPARCVS ALPHA ISAS 12
3.3 CONFIGURATION OF THE EMULATION PLATFORM FOR THE REAL-TIME EXPERIMENTS 14
3.4 BASIC SCENARIO FOR THE REAL-TIME EXPERIMENTS 14
3.5 RESULTS FOR PARAMETER SWEEP ON RT TASKS 15
3.5.1 THE SQRT ALGORITHM - SEQUENTIAL, COMPUTATIONALLY INTENSIVE RT TASK 15
3.5.2 THE PACKET ROUTER ALGORITHM - LARGE, PARALLEL, MEMORY INTENSIVE TASK 18
3.6 RESULTS FOR PERIODIC RT TASKS 21
3.6.1 THE SQRT ALGORITHM 21
3.6.2 THE PACKET ROUTER ALGORITHM 25
3.7 CONCLUSIONS ON PRIORITY THREADS 29
4 THREAD-LEVEL REDUNDANCY FOR FAULT TOLERANCE 30
4.1 BACKGROUND AND MOTIVATION 30
4.2 CONCURRENT PROGRAMMING ENVIRONMENT 32
4.3 ON-DEMAND REDUNDANCY 33
4.4 INTELLIGENT REDUNDANT THREAD CREATION AND SYNCHRONIZATION 36
4.5 THREAD PAIRING 38
4.5.1 FAMILY PAIRING 38
4.5.2 THREAD PAIRING 39
4.6 OUTPUT COMPARISON 41
4.7 EXPERIMENTAL RESULTS 42
4.7.1 EXPERIMENTAL PLATFORM 42
4.7.2 RESULTS 44
4.8 PROPOSAL FOR FAULT RECOVERY 48
4.8.1 BACKGROUND DISCUSSION 48
4.8.2 FAULT-RECOVERY PROPOSAL 49
4.9 CONCLUSIONS ON THREAD-LEVEL REDUNDANCY 52
5 REFERENCES 54




Multi-threaded processor for space applications | 3

1 Executive Summary

This report describes work undertaken under ESA contract 4000106331 by
Techne Consulting Ltd. in collaboration with the University of Amsterdam. The
foundation for this work is the multi-threaded, multi-core platform emulation
called the Microgrid, which was developed by the University of Amsterdam and
partners in the EU Apple-CORE project (http://www.apple-core.info).

Work under this contract included the modification of this emulation platform in
order to investigate two aspects of computing systems of interest to staff at ESA,

namely, the use of priority threads to support real-time (RT) tasks and the use of
thread-level redundancy to enhance system reliability. The report is divided into
two main sections that cover these two aspects of the work.

Simulation of RT threads was performed using two synthetic benchmarks, one
small and computationally intensive and the other larger and memory intensive.
These are an attempt to model control and communications algorithms
respectively. The benchmarks were executed while a background task (a large
FFT) was running. For both benchmarks the following general results were
observed:

1. Running the RT benchmark with priority threads always improved both
execution speed and jitter, typically by between a factor of between 2 and
4 times for both in all experiments.

2. When the background task was run on 4 cores it was clear that there was
interference from the background task through use of non-prioritised
shared resources (e.g. floating-point unit and particularly the L2 cache
and memory interface), however despite this, using priority threads for
the RT task always improved the RT task performance and jitter.

3. When both RT and background task were restricted to a single core, the
execution time of the RT task was only marginally slower than its
execution stand-alone.

In conclusion, using dual thread priority in the Microgrid core gave significant
improvements in both run time and jitter, however when background tasks
placed stress on the memory system the benefits were not so obvious. Even so
there was always at least a halving of the RT task execution time (both maximum
and average over multiple executions) and jitter, when using priority threads
over non-priority threads. In addition there was no significant impact on the
execution time of the background task. It is recommended that further
investigation be undertaken on a prototype single core with real-time threads.

For reliability, this report outlines and implements, in the Microgrid, a scheme
for automatic, user-defined thread replication and execution. As expected, it is
shown that there is an impact for executing double the number of instructions
through duplication but this overhead is always less than 100% and sometimes
significantly so, due to the multithreaded nature of the core. It is shown that the
less efficient the algorithm, the lower the overhead for duplicating the threads.



Multi-threaded processor for space applications | 4

Although not implemented in the emulation platform, the report also outlines a
strategy for fault recovery. This uses a combination of hardware and software
support, the latter provided by the programmer of the application. The hardware
support does not require any additional hardware but relies on the
master/redundant thread comparison buffer used in this scheme. It delays
writes to L2 cache from simple threads with few writes and is able to restart the
thread if an error is detected. Because of the nature of the programming model
for the Microgrid, where all independent computations are exposed as threads
(e.g. all independent loop iterations), this covers the common case. For threads
that are not "simple"”, when an unrecoverable error is detected the remaining
work in the region being protected is aborted a return code is passed to the code
through the synchronisation primitive, this allows the programmer to write code
in a way that allows efficient check pointing on these regions of code.

This work will be continued by Fu Jian at the University of Amsterdam and
further results on the implementation of a complete fault detection/recovery
and simulation using fault injection may be of future interest to ESA.



Multi-threaded processor for space applications | 5

2 Implementation of Priority threads in MGSim

2.1 Background and motivation

2.1.1 The Microgrid

This Section of the report describes the implementation details of the addition of
a static thread-level priority scheme for the Microgrid. The Microgrid is a
configurable and scalable platform comprising Dynamically-scheduled RISC
(DRISC) cores. The cores support hardware Micro-threads, which are scheduled
using dataflow synchronisers, the core's registers. Currently the Microgrid exists
as a full system simulation with a cycle-accurate timing simulation for most
operations (I/0 and some on-chip network operations are idealised). Details of
the simulator platform MGSim can be found in [1].

One of the key features of the Microgrid is its ability to manage as well as
schedule its threads in hardware, using additions to the core's ISA. This is the
equivalent of implementing parts of the operating system's kernel in hardware
and hence this work targets both architecture and operating system issues for
many-core systems. A major characteristic of the Microgrid approach is the
automatic and fair distribution of software parallelism to hardware resources
(mapping software to hardware threads), giving a resource agnostic
programming model. This together with the efficient thread scheduling using
data flow synchronisers and hardware supported selective barrier
synchronisation results in a very efficient architecture. If many hardware
threads are implemented on each core it is possible to hide long latencies in
instruction execution and yield high-core utilisation, even when code is
distributed across many cores. It is not uncommon for regular applications to an
achieve average IPC of 0.9 for the single-issue core across even large numbers of
cores.

2.1.2 Concurrency and concurrency management in the Microgrid

In the Microgrid, any task can be abstracted as families of threads, structured as
a hierarchical tree denoting different granularities of concurrency. This
composition is flexible and is made according to explicitly expressed
concurrency creation in the dynamic execution of a program. During execution, a
part of the concurrency tree, perhaps all, is mapped semi-automatically?! to a
cluster of one or more cores, called a Place in Microgrid terminology. Places
must be requested and allocated to the thread at the root of the distribution.
Software threads from families at different levels in the tree are then mapped to
hardware threads to do computation while being scheduled with the goal of
filling all of those pipelines as far as possible. The entire task is concluded with a
barrier synchronisation on all threads at the top level, which in turn may be
dependent on other lower level barrier synchronisations.

1 We say semi-automatically as the program must specify limits to the number of
hardware threads per core in each level of the tree in order not to exhaust resources too
soon.



Multi-threaded processor for space applications | 6

For a specific family, the procedure is generalized as contracting the minimum
number resources to assure execution (family allocation), followed by obtaining
the desired number hardware threads with contexts (family creation) and finally
by normal thread execution, switching into or out of the pipeline on data
dependencies. In family creation, if the number of hardware threads required is
less than the number of software threads, either by program-specified limits or
by resource constraints, the hardware iterates the software threads sequentially
through the available resources.

There are two main issues here that are relevant to prioritising threads. Family
allocation is non-pre-emptive and if no resources are available then the
alternatives are to fail or wait. Note that with cyclic dependencies, the latter can
induce deadlock. The other is that scheduling to the pipeline is fair. Both are
inadequate for the real-time requirements and are key factors in the design of
the priority scheme implemented.

2.1.3 Real-time and multi-core systems

The rudimentary role of real-time systems is in responding to the most urgent
task and completing its execution either within the constrained period (hard real
time) or with mild tardiness (soft real time) and where the degrees of imminence
of a task to its deadline are often termed priorities. To meet a deadline, the core
may often devote all its resources to the task with the highest priority until it is
complete in order to get rid of any interference from other tasks. It may then
resume the interrupted job or jobs.

As real-time systems start using multi-core processors to handle applications
with inherent concurrency for better performance or even for power reduction,
this all-for-one strategy used in single-core processors is less efficient in both
resource utilization and system throughput. On the one hand there is no
guarantee of full-time occupation of the privileged task over multiple cores and
on the other hand some other job may be seriously delayed or violate its timing
requirement if this strategy is followed. Alternative strategies may share the
resources, usually at a core level (thread level on thread-per-core software
models). For example a priority level may be given a core exclusively until
completion while still allowing other priority tasks to use other cores. The
concerns now change as typically cores share resources such as elements of the
memory hierarchy, busses, networks etc., which may cause interference with the
priority task. It is therefore a difficult trade-off in multi-core systems between
real-time assurance and other metrics, which challenge task management policy.

Up to now, studies for real-time, multi-core platforms usually fall into two
categories:

1. Task scheduling policies mostly at the software level, i.e. implemented in
the operating systems. E.g. [2] and [4] schedule to accelerate real-time
tasks via full use of shared caches. [3] and [5] explore real-time
scheduling on heterogeneous systems and [6] focuses on energy
efficiency. However, most have one thing in common, i.e. that cores are
task exclusive (the above mentioned share at core level) and a task
rescheduling implies a migration between cores entailing higher costs
than thread switches on the same core.



Multi-threaded processor for space applications | 7

2. Dedicated architecture design ensures even tighter bounds for hard real-
time jobs. It enables the co-execution of all kinds of tasks on the same
core but equips dedicated or prioritized hardware resources for real-time
tasks. [7] to [9] are examples built on simultaneous-multithreading (SMT)
cores which seem to be popular in this research area to exploit TLP as
well as ILP.

However priority tasks are managed, whether in software or in hardware, there
are two approaches to scheduling priority tasks in a system. The first is the
static naming of priority in tasks. For example the system designer associates
priority levels to certain tasks and these priority levels determine the scheduling
of the task at run time. This is the cornerstone that provides fundamental
support for real-time tasks, i.e. preferred resource and concurrency
management. On top of this, it is possible to add dynamic priority where
deadline monitoring can be used to tune a task's priority level during execution.
Although the latter has great potential in a fine-grain multi-threaded schedule,
this report focuses on static prioritisation.

2.1.4 Research issues

This report investigates the use of priority in the Microgrid to study embedded,
real-time systems in the context of multi-core, multi-threaded processors. We
restrict the results of this study to the use of static priority. This report outlines
the changes made to MGSim to support priority in concurrency management and
scheduling in the Microgrid. These changes are used to investigate application
strategies applicability to this domain through the appropriate use of priority in
combination with space sharing.

As already mentioned, the Microgrid does not support pre-emption (at least as it
is generally understood). Thus, even on a single core, it is not possible to use the
strategy described above where a priority task acquires all of the processor's
resources until it complete. The real-time task would have to wait an unbounded
time to acquire a resource. This approach is also not desirable. The virtualisation
of the core through the fine-grain interleaving of multiple hardware threads
means that unless the real time task were able to support sufficient threads to
tolerate latency, the core would become very inefficient. This may be a tolerable
solution to achieve a deadline but it not is energy efficient and hence not an
optimal solution. It is preferable to prioritise one or more virtual cores (threads)
over the others in such a way that resources are guaranteed at family allocation
and prioritised at family creation and scheduling. That allows time-sharing
priority tasks to be achieved without pre-empting an existing tasks. This is
therefore the approach taken in this study.

The major research question for this work is therefore whether it is possible to
achieve a similar result by prioritising a real-time task and continuing to timeshare
it, compared to what would be when making the core task exclusive.

The natural resource model for the Microgrid, i.e. considering more than one core,
is one of space sharing. Hence a secondary research question is what impact does
sharing resources such as cache, FPU etc. have on real-time tasks allocated a
complete core's resources.



Multi-threaded processor for space applications | 8

2.2 Implementing Priority in the Microgrid

As a foundation, the priority levels held in the Microgrid is a system-wide
variable and is configurable in profiles, which conforms to the current
convention in the execution of MGSim. The priority of a real-time task should be
exposed in code and will be used as the priority value of the root in the
concurrency tree. All sublevel families inherit priority from their immediate
higher-level family, which in turn may inherit or be explicitly assigned if it is the
root of the task. Such a foundation will instruct the Microgrid to conduct biased
resource allocation as shown in Figure 1 and Error! Reference source not
found.. Figure 1 shows a request for allocation of resources at a place (a cluster
of one or more cores) where a minimal set of resources is reserved so that the
family is run able. In principle, this will be guaranteed by the reservation of
resources at a given priority level.

Alloc_Queue
Type 1
Alloc_Queue
Type 2
Alloc_Queue
Type 3

family
allocation

Reserve
resources

Figure 1. Family allocation: reserve minimum resources for a serial execution. It guarantees a
runnable family on the Microgrid. N.b. in this and subsequent diagrams, multiple queues supporting
different priority levels are identified by the red shadow to an existing queue.

Target
Place

~family ™
creation

— ," N\ / / allocate \ |

create—req-with-handler = i \ ( exact |
[ Host ) l \ Family /‘v. ‘\, resources “ H
/ Create / /]

Figure 2. Prioritized family creation to get support of resources for fully execution.

Error! Reference source not found. shows the process of family creation, were
unused resources are allocated to a family up to a predefined limit specified in
the program.



Multi-threaded processor for space applications | 9

The key new components implemented to achieve this biased resource allocation
are the stand-alone buffers for requests to different priority levels. Processes
responsible for allocating resources will scan these buffers from the highest
priority to the lowest, pick out the first one to serve and then repeat the same
routine. This promises the first-come-first-served allocation only to requests of
equal importance and allows threads with higher priority come last and still be
served first. A crucial issue here, especially in family allocation, is to ensure the
availability of minimum resources whenever a real-time family request is
received, so as to make it runnable. This is similar to the resource issues
discussed in [7], which identified the policies as dynamic, dynamic with
threshold and static. For the Microgrid, a hybrid solution is more flexible, that is
to reserve resources for any forthcoming real-time task and restrain their usage
by non-real-time families. How many resources to reserve, at any level of
priority, is a matter of system-level design; it depends on the use cases for the
system. For static priority, for example, it may depend on the number of
potentially concurrent real-time tasks, whether the real-time task is able to use
thread-level concurrency for speed etc. Where both apply it would be up to the
system programmer to limit the resources allocated to one task to leave
resources available for the other concurrent one.

With two levels of priority it is relatively simple to devise a resource reservation
strategy. A high-priority task uses all resources and a low priority task uses only
non-reserved resources. With many levels of the possibilities and resources
required for efficient execution at each level are multiplied. We can turn to a
customized dynamic allocation with threshold [7], although it may leads to
performance loss, as there is no guarantee of acquiring resources for all levels. In
this work we use only two levels of priority (low and high) and instead of
reserving resources we use an upper bound on configured resources which is
greater than those required by any of the experiments. This is possible in
software emulation with the aim of determining what additional resources need
to be implemented to guarantee available to different levels of priority for the
applications tested in the target hardware.

A successfully created (mapped) hardware thread gets its unique context and is
ready to be fetched into the pipeline as long as its first instruction is in the I-
Cache. Once executed, it will be switched away on the following conditions:

1. Currentinstruction is at the I-Cache line boundary. On the Microgrid, a
running thread is I-Cache miss free. As stated above, the prerequisite of
entering pipeline is a full I-Cache line with instructions at the thread's PC.
The boundary switch is forced to allow for the fetch of the next line just
for this purpose. A thread that is swapped starts the process of filling
another [-Cache line before waiting for a new opportunity to switch into
pipeline again.

2. Switch annotations. These annotations are added by the compiler to the
binary files on instructions dependent on prior high-latency instructions,
also on branch instructions. This is an optimisation that allows
instructions that may suspend on empty registers to be followed in the



Multi-threaded processor for space applications | 10

pipeline by instructions from another thread. As there is no overhead for
the context switch, this is preferable to flushing the pipe on such an
occurrence.

3. Missing data. In the event that the compiler is unable to detect a
dependency and a switch was not issued on an instruction missing data in
one of its operands a switch will occur at the Register read stage.

4. Miscellaneous. This includes the end of all instructions in a thread,
memory barriers, etc.

In order to ensure there are no I-cache misses we lock lines currently in use by
one or more threads, n.b. the PC of an active thread defines the line in use. A
count of the number of threads using each I-cache line is maintained and when a
thread is made active, the appropriate count is incremented and when context
switched, the count is decremented. Only when the count is zero will the line be
released for re-use by other threads on an I-cache miss. With many threads each
using unique I-cache lines, unnecessary context switches may introduce an
impact on performance through I-cache line thrashing, which in turn can impact
the real-time task performance even though resources for it are available. I-
cache lines are shared resources and are not prioritised. It is imperative
therefore that the I-cache is sized according to the characteristics of the thread
load and expected sharing of the I-cache lines.

/\ / I-Cache line
Thfead / .Thread waiting list
v G

thread
allocation

Tamily

creation
allocate
exact
resources

allocate
exact
resources

. v
thread
preparation
Read
I-Cache

7
o T eDIZead Thy
raj I
% on &
Oz/:e/e Queyg Act Vzd
Us . Que, ve
re,
up o: "',sw;ke Thedod
o ady, real Pipeli
Perangs Rescheduling fpefine

Thread
Execution

Thread
Missing
Operands

Pending

Thread ID

Figure 3. The activities of a hardware thread: creation, preparation, activation, execution and
reschedule.

Figure 3 shows the various stages in the path leading to thread execution and the
various buffers in that path. Once a thread has been allocated resources, a once
off process, it may be switched many times. As explained above rescheduling a
thread requires a guarantee that the thread's PC hits a line in I-cache. Given the
frequency of this it is critical to ensure that this is not a bottleneck. It is also
possible that threads of different priorities will read the same cache line, e.g.



Multi-threaded processor for space applications | 11

calls to functions in the shared libraries. The process invoked on an I-cache miss
forces any threads requiring that line to wait in list on the cache line and when
that line arrives, these thread will be shifted to the active queue.

For priority scheduling we already require multiple active queues so threads can
be selected on a first-come-first-served basis within a given priority but where
this ordering may be reversed between threads of different priorities. However,
the existing implementation moves all threads in a thread-neutral list on the I-
cache to the thread-neutral active queue list and does so in a single cycle. N.b. a
list only holds pointers to the head and tail of the entries in the thread table,
where links define the list, hence appending a whole list to another is a two
operation process. It updates one link field (the old tail's) and the tail field for the
new list. Having one waiting list per cache line with mixed priorities complicates
the shifting of threads from this list to the active queue. It is a stateful process
that requires as many steps as there are threads in the lists; it may also invert
the priority serving them on a first-come-first-served basis to their respective
active queue lists. Consequently, each cache line must hold waiting lists for each
level of priority, as with the active queues. In this way, all waiting lists can be
appended to their corresponding active queues in a single cycle on the arrival of
the cache line and the priority of the lists can be taken into account.

On the other hand, the suspension on registers behaves quite differently because
each thread has its own register context and it is only global registers that may
have multiple threads waiting on them, which by definition will all be of the
same priority as only threads in the same family may read that family's global
registers.

In addition to above switching scenarios, the priority scheme introduces a
slightly different speculation on labelled context switches. Normally when the
active queue is empty the currently running thread will not be switched as this
switch is an optimisation and it may find data in its registers, so it is better to
context switch when this speculation is proved false. Nothing is lost as there are
no threads in the active queue to fill the pipe if switched. With priority queues
the same action is applied, even though a queue of lower priority may not be
empty.

Finally a mild form of pre-emption is applied to the active queues. As the fetch
stage of pipeline always keeps an eye on the status of the active queues,
whenever there is a non-empty queue with a higher priority, the currently
running thread is forced to switch and the head thread in that queue is picked
out to execute in the next cycle. Thus real-time threads always come to execution
as soon as they are ready.

Putting all the above together, the static priority scheme equips the Microgrid
with a basic capability to deal with real-time jobs and the fruit is shown in the
experiments. However, many resources on chip, especially memories, are shared
indicating the inevitable interference among threads with different priorities and
the lack of predictability and analyzability of WCET, unless there is architectural
supports, e.g. resource isolation or prioritisation.



Multi-threaded processor for space applications | 12

3 Experimental Results for Real-time tasks in MGSim

3.1 Synthetic Benchmarks

In order to evaluate the benefits of implementing priority in MGSim, we have
designed two benchmarks to represent the spectrum of anticipated real-time
tasks. The first is the computation of square root, which is small, i.e. requires few
processor cycles, sequential and computationally intensive, i.e. it does not have
many memory operations compared to floating point operations. We believe this
is characteristic of a number of iterative control algorithms used in space
applications.

The second benchmark is a packet router task. This requires a significant
number of processor cycles, is parallel and memory intensive as the major art of
the benchmark is a parallel copy of a message in an input buffer to the addressed
output buffer. We believe that it is characteristic of many communication
algorithms used in space applications.

We implement square root by Newton iteration. It implements the following,
where x converges to the sqrt(y)

X0:=X; X:= (x0+y/xX0)/2.0;

The benchmark can be implemented with different precision, e.g. 1, 2, 4 and 8
decimal places. The algorithm converges quadratically, which is is equivalent to
2, 3,5 and 9 iterations of the above equation for the single thread case. Although
the algorithm is sequential algorithm we implement it with concurrent but
dependent threads and investigate its behaviour with different numbers of
threads exposed to the hardware.

The routing algorithm based is loosely on TCP/IP. It reads a header and extracts
a 32 bit address which determines the output buffer required to route the packet
input (1 of 4). It then reads the packet length and copies the packet from the
input buffer to the addressed output buffer - we vary the packet size from 64
bytes, which is largely routing overhead, 4Kbytes, 16Kbytes and 64Kbytes. It is
implemented with a parallel copy, i.e. each thread copies one byte from the input
buffer to the output buffer.

3.2 Sparc vs Alpha ISAs

Known inefficiencies, e.g. unecessary pipeline stalls on the use of double loads
plus a number of toolchain issues in compiling Sparc code meant the emulation
of the Sparc ISA would not show what is capable from the microthreaded
architecture. We therefore include here, results to demonstrate the
implementation differences in micro-architecture and to show the results are
qualitatively similar, although differ in peak performance between these ISAs
due these issues.

We implemented both 32 bit (32K length) and 64 bit (64K length) FFTs on both
Sparc and Alpha ISAs over a range of parameters (number of cores and number
of threads used per core). As shown in Figure 4, which uses the 32 bit operands,
the results are very similar for the two ISAs. The peak efficiency on the Sparc ISA
is reduced by about 14% compared to Alpha due to differences in the ISA.



Multi-threaded processor for space applications | 13

However, if we execute the FFT with 64-bit operands, as shown in Figure 5, we
see that the efficiency of Sparc is only about 50% of that for the Alpha (i.e. one
Alpha core is equivalent to two Sparc cores) due to the large number of double
loads in the FFT, which stall the pipeline for one cycle per load. We note that the
IPC of the 4-core Alpha execution is not twice that of the 2-core run, as it
saturates the memory system.

32K FFT IPC Sparc vs Alpha

35

25

2 - =4&—1 core Alpha
~#—2 cores Alpha

4 cores Alpha

Instructions per cycle

=>é=1 core Sparc

¥ X =32 cores Sparc

4 cores Sparc

0 2 4 6 8 10 12 14 16 18

Number of threads

Figure 4. Results for 32K FFT using 32 bit operands comparing execution on Sparc and Alpha ISAs.
The results show IPC.

IPC for 64K FFT Sparc vs Alpha ISA

25

1.5
~ —— m =1 core Alpha

=2 cores Alpha
4 cores Alpha
=>&=1 core Sparc

=3¥=2 cores Sparc

/ e =3 4 cores Sparc

Instructions executed per cycle

0.5 7

0 2 4 6 8 10 12 14 16

Number of threads

Figure 5. Results for 64K FFT using 64 bit operands comparing execution on Sparc and Alpha ISAs.
The results show IPC.

Because of these results, we agreed to run all evaluations of the real-time thread
benchmarks on the Alpha ISA.



Multi-threaded processor for space applications | 14

3.3 Configuration of the Emulation platform for the Real-time experiments
All experiments presented here were implemented with the following emulation
configuration:

* Four off 400MHz Alpha cores with microthreaded extensions;
e 2 off FPUs, shared between two cores;
* Pipelined I/0 bus and on-chip memory as specified below:
o 16K I-cache and 4K D-cache per core (4-way)
o 1 off shared 256K L2 cache (4-way)
o 2 off DDR2-800 channel
* On chip concurrent resources i.e. Thread and Family table sizes were as
required by the benchmarks - we evaluate how many families, threads and
what RF size would be required through evaluation on a cost performance
basis
* The reservation of Priority thread slots, FT entries and registers is similarly
as required.

3.4 Basic Scenario for the Real-time Experiments

In all experiments we run the real-time task against a long running background
task. We have chosen the 64K FFT as the background task against which the RT
benchmark is executed. The FFT is both computationally intensive as well as
non-local in its memory requirements, so it exercises all parts of the system. In
the algorithm, at first the data required is local and likely to be sourced from the
local cache. However in the later stages of the algorithm, the data required will
not be local and so will exercise both L2 cache and memory system.

Figure 6 again shows the results from running the FFT algorithm as a baseline,
i.e. with no other tasks competing for resources. It shows speedup and average
efficiency per core from 1 to 4 cores and from 1 to 8 threads. As can be seen, the
best speedup is with 4 cores where the benefit of moving from 4 to 8 threads is
negligible. With 4 cores and 4/8 threads the efficiency is limited by memory
bandwidth at around 50% per core. For 1 and 2 cores efficiency is higher with a
maximum between 80 and 90%. That is 90% of all pipeline cycles utilised. There
is also a significant increase in efficiency between 4 and 8 threads (and hence
speedup).

Average efficiency per core of baseline FFT for Speedup of Baseline FFT for 1,2 and 4 cores
1,2 and 4 cores 7
100%
90%
B80%
70%
0%
-1
S0% —.—

3 ~-2
-2

0%
10%

1 2 3 a 5 6 7 8 9 0 1 2 3 4 5 6 ? 8

Number of h/w threads Number of h/w threads

Figure 6. 64K FFT executing on the 4-core ESA configuration. On the left is average efficiency per
core and on the right is speedup vs single core/single thread.



Multi-threaded processor for space applications | 15

We have run two sets of experiments, the first execute a single instance of the
real time task during the execution of the FFT. We do this sweeping through
various parameters, namely data size for RT task, number of cores and threads
for both RT task and background task. The RT task is executed well into the FFT
at 100,000 cycles into the 10 to 50 million cycles taken by the FFT.

In the second set of experiments we execute the RT task periodically during the
execution of the FFT for a limited range of realistic parameters.

3.5 Results for Parameter sweep on RT tasks

3.5.1 The Sqrt algorithm - sequential, computationally intensive RT task

Figure 7 shows the execution time of the Sqrt algorithm on a single core for both
1 and 2 threads. It can be seen that the 2-thread version is slower than that for a
single thread. However it executes more instructions, both in setting up the task
and in executing it. The linear interpolation of the results shows that the
overhead for setting up and synchronising the task is a little below 200 and 250
cycles respectively for 1 and 2 threads. However, the 2-thread version is slightly
faster per iteration. As expected, if we look at efficiency (see Figure 8) the 2-
thread implementation shows a small increase in efficiency but as the algorithm
is sequential we get only ~30% efficiency in both cases. We restrict the
remaining experiments for Sqrt therefore to the 1-thead version.

Execution time for Sqrt

350

¥ 1thread

¥ 2 threads

Execution time (cycles)
o
&

10P 20p 4app 8DP

Precision

Figure 7. Execution time of Sqrt task for different precisions for 1 and 2 threads.

Average efficiency per core for all real time tasks

70.0%

60.0%
50.0%
®1 Thread
40.0%
W2 threads
¥ 4 threads
30.0% T
® 1 Thread 4 cores
W 2 threads 4 cores
20.0% 7
¥ 4 threads 4 cores
10.0%
0.0% T T

Sqrt 10P Sqrt 20P Sqrt 40P Sqrt 80P Packet 64 Packet 4096  Packet Packet
16384 65536

Efficiency

Figure 8. Efficiency of all RT benchmarks across all threads and cores used in the experiments.



Multi-threaded processor for space applications | 16

The above results represent the baseline for comparison in the following
experiment. We look at the execution time of the same algorithm, limited to one
thread and compare the execution time to the baseline above. In order to
investigate the impact of different activity sharing and FFT parameters we define
the following experiments.

1. Base - the RT thread is executed stand alone on one core results above.

2. Shared L2 Cache - the FFT is executed on a 2-core place and the RT thread
is executed on one of the remaining cores, which does not share an FPU
with FFT. In this way we isolate the sharing of a core or FPU unit (shared
between 2 cores). However, this is unlikely to place a maximum load on
the L2 cache as we see a peak efficiency of over 80% in the FFT with 2
cores and 8 threads. This shows that the FFT is able to tolerate memory
operations and the bandwidth limit on memory is not exceeded.

3. Shared FPU - the FFT is executed on one core and the RT thread is
executed on the core sharing the same FPU.

4. Shared core - the FFT is executed on all 4 cores and the RT thread is
executed on one of the cores at the same priority as the FFT.

5. Shared core P - as above but the RT task is executed using a priority
thread.

We measure the impact of sharing resources (Space sharing) in experiments
2 and 3 and in using priority by comparing the execution time of experiments
4 and 5. Experiments 4 and 5 are then repeated with the FFT running on a
single core.

Execution time jitter of Sqrt (1 thread) as a
percentage of baseline in various configurations

Shared core 8/1(4) P

Shared core 4/1(4) P
Shared core 2/1(4) P
Shared core 1/1(4) P

Shared core 8/1(1) P
Shared core 4/1(1) P
Shared core 2/1(1) P
Shared core 1/1(1) P

Shared core 8/1{4)
Shared core 4/1{4)
Shared core 2/1{4)
Shared core 1/1{4)

Shared core 8/1(1)
Shared core 4/1(1)
Shared core 2/1{1)
Shared core 1/1{1)

Shared FPU 8/1
Shared FPU 4/1
Shared FPU 2/1
Shared FPU 1/1

=gpp

) . T |}I||f

“app

Shared L2 8/1 =2pp
Shared L2 4/1

Shared L2 2/1

®1ipp

Shared L2 1/1

)

o

100% 200% 300% 400% S500% 600% 700% 800% 900% 1000% 1100%

Figure 9. Execution time jitter for Sqrt across a range of parameters and sharing conditions plotted
as a percentage of the baseline execution time. In all labels the parameters x/y represent the



Multi-threaded processor for space applications | 17

hardware threads allocated to FFT and Sqrt respectively and the figure in brackets for the shared
core experiment indicates the number of cores on which the FFT runs.

Figure 9 shows the results of all experiments in the parameter sweep
experiments. Each run was compared to the Sqrt function executing stand alone
and plotted as a percentage of this baseline execution time. It should be noted
that only the shared core experiments use priority threads. The other two
(shared L2 and shared FPU) are included to illustrate the impact of sharing
resources when space sharing the real-time task.

It can be seen that the impact of sharing FPU is low. The worst case is a 35%
increase in execution time for the lowest precision result and for the full
precision is no more than 20% overhead. This shows that the FPU is well
provisioned.

There is a larger impact in sharing the L2 cache. The worst case is an 88%
increase in execution time for the lowest precision result and for the full
precision is no more than 51% overhead. This shows that, for two cores at least,
the L2 cache is also well provisioned. Note that the largest overhead is for 8
threads of FFT, where the FFT is running at more than 80% efficiency. Note that
even though the Sqrt task is not memory intensive, the creation of threads and
their execution requires memory operations to set up the family parameters and
fetch cache lines.

For the shared core experiments, we see a similar trend in all results. The
overhead increases with increasing FFT threads (i.e. more efficient FFT
execution) and decreases with precision, confirming the impact is in the set up of
the Sqrt execution. For a single core without priority the worst-case overhead is
184%, which is reduced to 36% when using priority. For the four-core case the
impact is much worse. Without priority, in the worst case, there is a 10 times
increase in execution time compared to the base case, which is reduced with
priority to a factor of 6. In both cases this is for 8 FFT threads and 1DP accuracy,
i.e. a very short task subject to significant overheads in setup costs, probably due
to contention on memory.



Multi-threaded processor for space applications | 18

Execution time jitter of the Packet router (1 thread) as
a percentage of baseline in various configurations

Shared core 8/1(4/4) P =——-——

Shared core 4/1(4/4) P
Shared core 2/1(4/4) P
Shared core 1/1(4/4) P

Shared core 8/1(4) P
Shared core 4/1(4) P
Shared core 2/1(4) P

Shared core 1/1(4) P

Shared core 8/1(1) P
Shared core 4/1(1) P
Shared core 2/1(1) P
Shared core 1/1(1) P

Shared core 8/1{4/4)
Shared core 4/1{4/a)}

Shared core 2/1{4/a)
Shared core 1/1{4/4}

Shared core 8/1(4)
Shared core 4/1{4)
Shared core 2/1{4)
Shared core 1/1{4)

Shared core 8/1(1)
Shared core 4/1(1)
Shared core 2/1{1)
Shared core 1/1(1)

Shared FPU 8/1
Shared FPU 4/1
Shared FPU 2/1
Shared FPU 1/1

65536
16384
4096
Hp4

Shared L2 8/1
Shared L2 4/1
Shared L2 2/1
Shared L2 1/1

oy nnﬂl mn“ o wr

(=]
&

-
=3
=1
*

200%  300%  400%  500%  600%  700%  800%  900%

Figure 10. Execution time jitter for the 1-thread Packet router across a range of parameters and
sharing conditions plotted as a percentage of the baseline execution time. In all labels the
parameters x/y represent the hardware threads allocated to FFT and router respectively and the
figure in brackets for the shared core experiment indicates the number of cores on which the FFT
runs, in one experiment (4/4) the Packet router is also run on 4 cores.

3.5.2 THe Packet Router Algorithm - large, parallel, memory intensive task

Figure 10 to Figure 12 show the results for all experiments in the parameter
sweep experiments for the Packet router algorithm. Each run was compared to
the same function when executing stand-alone and is plotted as a percentage of
this baseline execution time. In this case, because there are performance gains to
be made, the results are shown for 1-, 2- and 4-thread executions. Again it should
be noted that only the shared core experiments use priority threads. The other
two (shared L2 and shared FPU) are included to illustrate the impact of sharing
resources when space sharing the real-time task.

In all of these plots we see a similar pattern to that seen in Figure 9. For the
space-sharing experiments, there is very little additional execution time, while
sharing resources with the FFT background task. A 30% overhead for the
smallest packet size is the worst case for a single thread and excluding the
smallest task, the maximum overhead is only 9%. For two threads this increases
slightly to a maximum of 58% for the smallest task and 24% otherwise. For 4
threads there the figures are 45% and 29% respectively. As to be expected, the



Multi-threaded processor for space applications | 19

worst case execution times are for the shared L2 cache experiment, as the packet
router is not a computationally intensive kernel but memory bound.

Considering the shared core experiments on a case-by-case basis, for a single
core, labelled (1), we see the most predictable results. Without priority the
overhead on the real-time task increases with the number of FFT threads
resulting in approximately 4 times the baseline for 1 and 2 RT threads and

Execution time jitter of the Packet router (2 threads) as
a percentage of baseline in various configurations

Shared core 8/1{4/4) P
Shared core 4/1{4/a) P
Shared core 2/1{4/4) P
Shared core 1/1{4/4) P

Shared core 8/1{4) P
Shared core 4/1{4) P
Shared core 2/1{4) P
Shared core 1/1{4) P

Shared core 8/1(1} P
Shared core 4/1{1} P
Shared core 2/1{1) P
Shared core 1/1{1} P

WO ) )

Shared core 8/1(4/4)
Shared core 4/1(4/4)
Shared core 2/1(4/4)
Shared core 1/1(4/4)

Shared core 8/1(4)
Shared core 4/1(4)
Shared core 2/1(4)
Shared core 1/1(4)

Shared core 8/1(1)
Shared core 4/1(1)
Shared core 2/1(1)
Shared core 1/1(1)

Shared FPU 8/1
Shared FPU 4/1
Shared FPU 2/1
Shared FPU 1/1

®p5536
W16384
4096

Shared L2 8/1
Shared L2 4/1
Shared L2 2/1
Shared L2 1/1

Wed

mmwwﬂw

2

100% 200% 300% 400% 500% 600% 700% 800% 900% 1000% 1100%

Figure 11. Execution time jitter for the 2-thread Packet router across a range of parameters and
sharing conditions plotted as a percentage of the baseline execution time. Labels as Figure 10.

decreasing to about 3 times for the 4-thread packet router. We believe this result
illustrates the fair scheduling in the Microgrid core, i.e. the more threads used for
the RT task, the greater the share of resources the task uses and hence the
overhead of running against the background task is reduced. Note that this
experiment is not bandwidth limited as it uses just a single core.



Multi-threaded processor for space applications | 20

Execution time jitter of the Packet router (4 threads) as
a percentage of baseline in various configurations

|

Shared core 8/1(4/4) P

Shared core 4/1(4/4) P —
L

Shared core 2/1(4/4) P |l

Shared core 1/1(4/4) P

Shared core 8/1(4) ¢

&

Shared core 4/1(4) P
JE—
Shared core 2/1(4) P =

Shared core 1/1(4) ¢

Shared core 8/1(1) P
Shared core 4/1(1) ¢
Shared core 2/1(1) ¢

Shared core 1/1(1) ¢

Shared core 8/1{4/4)
Shared core 4/1{4/4)
Shared core 2/1{4/a)
Shared core 1/1{4/4)

Shared core 8/1(4)
Shared core 4/1{4)
Shared core 2/1{4)
Shared core 1/1{4)

Shared core 8/1(1)
Shared core 4/1(1)
Shared core 2/1(1)
Shared core 1/1(1)

Shared FPU 8/1
Shared FPU 4/1
Shared FPU 2/1
Shared FPU 1/1

®Ee5536

16384

Shared L2 8/1
Shared L2 4/1
Shared L2 2/1
Shared L2 1/1

a6

=g

o B ;mw ”'”ll o

=]
g

100%  200%  300% 400% 500%  600% 700%  800% 900% 1000%

Figure 12. Execution time jitter for the 4-thread Packet router across a range of parameters and
sharing conditions plotted as a percentage of the baseline execution time. Labels as Figure 10.

If we compare this with the RT task running with priority threads the difference
is significant. The maximum overhead is 40% across all parameters and this
reduces to 16% if we exclude the smallest packet size. These are very predictable
results.

For both of the experiments running FFT on 4 cores, the results are similar to the
single core, except for the smallest packet size. Without priority, there is a
gradual increase in execution time with FFT threads up to about 4 times the base
execution time, whereas for the smallest packet this increases to around 10
times. The priority thread results are constrained to within an additional 50%
for the longer packet sizes but for the smallest packet size, we also see a large
increase in execution time of up to 6 times the base case, which increases with
the number of threads executing. The fact that this overhead reduces with packet
size is indicative of a one off delay in setting up the algorithm, i.e. in the process
of creating threads. This is quite likely caused by memory accesses delayed
because of bandwidth limitations when running relatively large numbers of
threads on all four cores. We see this in the reduction in FFT efficiency when
moving from 2 to 4 cores, see Figure 6.



Multi-threaded processor for space applications | 21

3.6 Results for Periodic RT Tasks

For the second set of experiments we wanted to look at a realistic execution
schedule for the real time task and look at the average execution time statistics
and jitter over the set of results. To achieve this we selected typical parameters
for the two RT tasks, namely 8DP for Sqrt using a single thread (~600cycles for
the base case) and a 16KByte packet for the packet router using 4 threads
(~10,000 cycles for the base case). These RT tasks were executed periodically
while concurrently executing a 64K FFT running with 8 threads. Again we
compare the statistics with and without priority threads for the real-time task.
The configurations used were as follows:

1. FFT and RT tasks both executed on a single core (1+1);

2. FFT executed on 4 cores RT task executed on 1 core (4+1);

3. FFT executed on 4 cores RT task executed on 4 cores (4+4) - packet
router only.

The real-time tasks were implemented in a loop using a delay between
executions and start time and execution time were recorded for each execution.
Similar statistics were recorded for the FFT running in a separate independent
thread. We present results for only those RT tasks executing during the FFT
execution.

3.6.1 The Sqrt Algorithm

The Sqrt task was executed at a nominal rate of once every 10,000 cycles and
again at once every 20,000 cycles, which with timing overhead is a nominal duty
cycle of 10% and 5% respectively for the RT task. When running concurrently
with the FFT, an overhead in the timing threads increased the period measured,
which varied between 1200 for both threads on the single core and on 4 cores
with priority thread to around 1800 for non priority on 4 cores. For the 2,00
cycle nominal case the corresponding figures were 2200 and 2800. Note that
both this variation in periodicity and the variation in run-time of the FFT had an
impact on the number of RT tasks executed in the different experiments.

We first present the variation in execution time of the background FFT task,
which is shown in Figure 13. For the 1-core experiments, the FFT is executing at
about 90% efficiency (see Figure 6). Without priority, if you consider the
additional instructions that have been executed in the RT task, there is little
impact on the performance of FFT. There is more effect when using priority but
still the impact is relatively minor being only about a 5% reduction in execution
efficiency.

For the 4-core experiments we see an interesting effect. Without priority, the
result of running the RT task is to speed up the execution of the FFT. We know
the FFT is running at low efficiency because of memory pressure and we have
observed that modifying the schedule of memory requests can have an impact on
performance, i.e. it is not the average request rate but peak rate than can limit
performance. Again performance is affected negatively with priority but
considering the number of additional instructions executed per core it is only the
(4+4) case where there is any appreciable overhead, where in this case it gives a
15% reduction in execution efficiency.



Multi-threaded processor for space applications | 22

FFT execution time with and without RT tasks

2.50E+07 2.50€+07
FFT cycles
FFT Ins/core
W RTins/core

2.00E+07

1.50E+07 1.50€+407

1.00E+07 1.00e+07

Execution time (cycles)
Instructions excuted

5.00E+06 5.00£406

'i-h HE-EE N

0.00E+00 — —

lbase 1+1Sqrt 1415grt 141p-r 141prP dbase 4+1sqrt 441sqrt &+1p-r &+1p-rP dedp-r dedp-rP
No P P NoP NoP 4 NoP No P

Figure 13. Execution times of 64K FFT running with and without periodic real-time time tasks. The
blue bars show the execution times. The green overlay on the baseline execution time is the number
of instructions executed by the FFT. The red overlay represents the additional instructions executed
by the real time task during the FFT's execution.

Figure 14 shows the jitter in execution time for all iterations of the Sqrt RT task.
It plots the execution time for each iteration. It can be seen that using priority
(red and blue tracks) reduces both execution time and jitter in the execution
time compared to the same experiment without priority. The other clear result is
that jitter is significantly less when running the FFT on a single core. The reason
for this is quite obvious, running FFT on 4 cores puts a much larger pressure on
the shared resources, in particular the memory system, which is not prioritised
and can cause significant latency if request messages get queued. The load the
FFT puts on the memory system is not constant over its execution and this can
be seen as well. The communication pattern of FFT is non-local. Data is required
at stage k = 0..n-1, for a 2" transform, from a skip distance of 2k relative to the
local writes, so that there will be increasing bus activity as k increases and the
effects of locality diminish. Although Sqrt is a computationally intensive task and
hence does not require many memory operations, it has a relatively small
execution time. Hence the initial memory reads and final store of the result could
add significantly to its execution time if the memory requests are being queued.
There could also be delay in memory operations involved in creating the task
itself.



Multi-threaded processor for space applications | 23

Periodic execution of Sqrt every ~10%cycles

14lno P
4P
T #4noP
—14p
— base case
£
£
c
§
&
g At 1l |l
) Yy ’.|I" Ew“”—:]-‘ Y Al ,l.‘q”p,..}‘
Abdliaba ek S = T S
o oo
0
0 200 400 600 800 1000 1200 1400 1600 1800

Iteration number of Sqrt

Figure 14. Execution time of multiple Sqrt tasks nominally every 10,000 cycles, executing concurrently
with FFT on 1 and 4 cores.

Periodic execution of Sqrt every ~2*104 cycles

3000 : :
1+1NoP
—141P
= 4+1No P
2500 =l
= base case
2000 r
: |
£ oo L] N
c
%
= | "j]]”"A Al !,A.r-;-‘n",l,!:'v, biladoa Ly bl
\ o L | b Bl
1000 ! | 1 |
WM”‘JMI P = = YT Y )
o r
0 100 200 300 400 500 600 700 800 900 1000

Iteration number of Sqrt task

Figure 15. Execution time of multiple Sqrt tasks nominally every 20,000 cycles, executing concurrently
with FFT on 1 and 4 cores.



Multi-threaded processor for space applications | 24

On a single core, the impact of memory contention is minimal and we see a very
consistent execution time, which is some 5-10% above the base case. Even
without priority execution time on a single core is still very consistent but using
priority gets the job done some 2.34 times faster on average with an absolute
jitter reduction of 2.52. In both cases the jitter as a percentage of average
execution time is 42% with priority and 45% without.

On 4 cores, the average speedup using priority is 2.19 times and the jitter is
reduced in absolute terms by 1.56 times. Here the jitter as a percentage of
average execution time is 171% using priority and 199% without.

Maximum Average Minimum | Base case
1+1 No P (1074) 1228 1090 740 430
1+1 P (1074) 631 465 437 430
4+1 No P (1074) 2776 1172 442 430
4+1 P (1074) 1343 534 431 430
1+1 No P (2*1074) 1208 1093 758 430
1+1 P (2*1074) 631 468 448 430
4+1 No P (2*1074) 2778 1253 523 430
4+1 P (2*1074) 1538 560 431 430

Table 1. Execution time statistics for Sqrt with and without priority on 1 and 4 cores. The figures in
brackets show the nominal cycle time of RT task execution.

Figure 15 shows the results for the situation where the load imposed by the RT
task is halved. The results are qualitatively very similar with the overall pattern
being reproduced with approximately half the number of executions.

In this case, on a single core, using priority gets the job done some 2.33 times
faster on average with an absolute jitter reduction of 2.46. In both cases the jitter
as a percentage of average execution time is 39% with priority and 41% without.

On 4 cores, the average speedup using priority is 2.23 times and the jitter is
reduced in absolute terms by 2.03 times. Here the jitter as a percentage of
average execution time is 180% using priority and 198% without.

Table 1 and Figure 16 show the aggregated statistics for the Sqrt RT task for both
frequencies of execution. We define jitter as reported above as the difference
between maximum and minimum values in this table. For information and
further analysis, the interested reader is referred to the source data in the
spreadsheet submitted along with this report.



Multi-threaded processor for space applications | 25

Execution statistics of periodic RT Sqrt task

3000
2500

2000 1

 Maximum

1500 1
W Average

B Minimum
1000 1 M Base case
500 + i I

141 NeP 141 P 4+1NoP 441 P 1+41NoP 141 P 4+41NoP 4+1P
{10%4) (10~4) (1074) (107} {2*10%4) (2°10*4) (2*10"4) (2*10°4)

g

Figure 16. Statistics for Sqrt executions with and without priority on 1 and 4 cores. The figures in
brackets show the nominal cycle time of RT task execution.

3.6.2 The Packet Router Algorithm

The packet router was executed nominally every 0.5 for the high duty cycle and
1.0 million cycles for the low duty cycle experiments. The baseline execution
times for the16K packet router task running stand-alone are given in Table 2.
The first thing to note is that because of the good locality properties of this code
we see almost ideal speedup, 3.98, once the caches are warm. We also note that
the duty cycle of these experiments is around 20% and 10% respectively. As
with the previous experiment, concurrent threads manage and time the
execution of all the packet router tasks in one and the execution time of the 64K
FFT background task in the other.

Solo-core Quad-core  Speedup
Cold base 105112 26594 3.95
Warm base 102457 25701 3.98

Table 2. Baseline execution time in cycles for the 16K packet router task on one and four cores.

It can be seen from Figure 8 that the baseline efficiency (per core) of the packet
router is very similar for both single and four-core cases. It starts at 25% for a
single thread rising to 50% for 2 and 60% for 4. We also note from Figure 6 that
on 4 cores the FFT executes at an average of 50% efficiency. In these
experiments we use 4 threads to implement the packet router so clearly there is
the potential for more impact on performance than with the Sqrt kernel, which
only executes at 30% efficiency.



Multi-threaded processor for space applications | 26

Periodic execution of Packet router every ~5*10° cycles

6.00£405

5.00£405

4.00£405

===*1+1NoP

—141P
4+1NoP

— 441 P

3.00£405

====4+4d No P

444 P

Execution time (cycles)

Base 1 core

2.00£405 = === base 4 core

1.00£405

0.00E+00

o0 5 10 15 20 25 30 35 40 45 50
Iteration of Packet router task

Figure 17. Execution time of multiple Packet router tasks nominally every half million cycles, executing
concurrently with FFT. Both FFT and RT tasks are executed on 1 and 4 cores with the mixed case 4+1
being 4 cores for FFT.

Figure 17 shows the results of the high duty cycle experiment. The first key
result we notice is that running the priority task over the same cores as the
background task reduces execution jitter. This is true for the single core case
where the memory system is not saturated but also we note for the case where
both FFT and Packet router run on all four cores. Whereas in the (4+1)
experiment, we see that even with priority the execution time of the Packet
router increases significantly as we progress through the different stages of the
FFT, which as already explained give an increasing load on the memory system
due to non-local communication. This is not seen at all in the (1+1) experiment
and is substantially attenuated in the (4+4) experiment, especially when using

priority.



Multi-threaded processor for space applications | 27

Periodic execution of Packet router every ~106 cycles

600000 - = 141NoP
—1s1P
4+1No P

— s P

500000

Base 1 core

400000 = === base 4 core

300000 S e B

Execution time (cycles)

100000

] 5 10 15 20 25
Packet router iteration number

Figure 18. Execution time of multiple Packet router tasks nominally every million cycles, executing
concurrently with FFT. Both FFT and RT tasks are executed on 1 and 4 cores with the mixed case 4+1
being 4 cores for FFT.

As before, we see a consistent speedup in execution time between using priority
threads and not. For the single core case, the average period is 5.02*105 cycles
both with and without priority, so the timing overheads are not so significant in
this longer period. The speedup using priority is 2.74 and the reduction in jitter
is 2.84. The absolute jitter is very low, just 4.7% and 4.5% of the average
execution time for no priority and priority respectively.

For the (4+4) case, the period is 5.11 and 5.04*10> cycles for no priority and
priority respectively. The speedup using priority is 3.05 and the reduction in
jitter is 2.27. The absolute jitter is higher in this case at 53% and 71% of the

average execution time for no priority and priority respectively.

For the (4+1) case the actual period averages out at 5.13 and 5.05*10° for no
priority and priority respectively. It is in this experiment that we see the worst
jitter. This is not surprising as we have three cores running FFT only, which
unlike the (4+4) case, are un-moderated by running priority threads. This means
they continue to place a large load on the memory system, while the priority
threads are running on the fourth core. With this case, the speedup using priority
is 2.29 and the reduction in jitter is only 1.19. The absolute jitter here is 54% and
104% of the average execution time for no priority and priority respectively,
confirming the impact on priority threads from this un-moderated load on the
memory from the other three cores.



Multi-threaded processor for space applications | 28

Statistics of periodic Packet router RT task

B Maximum
™ Average
= Minimum
i - ¥ Base case
o © o © o ©
\\Q
2

Q N q QQQ Q

o n ) N ) >
P Dﬂ K 2 - ¥ \ W ~ W
> ~ N » ;’\\ S N W W

5.0E405
4.5E405
4.0E405

356405

3.0E405

256405

206405

156405 1 -

1.0E+05

5.0£404 h

T I
» Y -'\Q -'\Q -'\Q '\Q -'\0

0.0e+00

& N

Figure 19. Statistics for the Packet router executions with and without priority on 1 and 4 cores,
including the execution of the RT task on 4 cores. The figures in brackets show the nominal cycle time
of RT task execution.

Figure 18 shows the results for the low-duty cycle case, with nominal period of
1096 cycles. We see a very similar picture with the (1+1) and (4+4) cases giving
low jitter and the (4+1) case showing the same increase in execution time as the
FFT task progresses. The aggregated results for this duty cycle are both
qualitatively as well as quantitatively similar to the higher duty cycle
experiment, with the exception of the fewer RT task executions.

Maximum Average Minimum Base case
141 No P (5*10”5) 305360 299269 291206 102457
1+1 P (5*1075) 111752 109151 106781 102457
4+1 No P (5*1075) 517017 393888 303486 102457
4+1 P (5*1075) 129579 99393 76614 102457
4+4 No P (5*1075) 129579 99393 76614 25701
4+4 P (5*1075) 51507 32630 28169 25701
1+1 No P (1076) 307421 301010 292254 102457
1+1 P (10%6) 111040 109253 106820 102457
4+1 No P (1076) 562281 412938 306603 102457
4+1 P (10”6) 296530 179131 112415 102457
4+4 No P (1076) 114431 96131 74900 25701
4+4 P (1076) 49435 36773 29338 25701

Table 3. Statistics for the Packet router executions with and without priority on 1 and 4 cores,
including the execution of the RT task on 4 cores. The figures in brackets show the nominal cycle time
of RT task execution.

Table 3 and Figure 19 show the aggregated statistics for the packet router
experiments. What is significant to notice is the clustering of max, average and
minimum execution times in close proximity to the base case in the (4+4) and
especially the (1+1) experiments.



Multi-threaded processor for space applications | 29

3.7 Conclusions on Priority Threads

Simulation of RT threads was performed using two synthetic benchmarks, one
small and computationally intensive and the other larger and memory intensive.
These are representative of control and communications algorithms
respectively. The benchmarks were executed while a background task (a large
FFT) was running. Various configurations were evaluated including tests to
evaluate the use of shared resources when the RT thread executed stand-alone
on a single core but shared resources with the background task. In addition to
this experiments wee undertaken to run the benchmarks periodically and to
collect statistics on their execution. This included running both the background
task and the RT task (where possible) on both a single core and on all 4 cores.

For both benchmarks the following general results were observed:

1. Running the RT benchmark with priority threads always improved both
execution speed and jitter, typically by between a factor of between 2 and
4 times for both.

2. When the background task was run on 4 cores it was clear that there was
interference from the background task through use of non-prioritised
shared resources (e.g. floating-point unit and particularly the L2 cache
and memory interface), however despite this, using priority threads for
the RT task always improved the RT task performance and jitter.

3. When both RT and background task were restricted to a single core, the
execution time of the RT task was only marginally slower than its
execution stand-alone and the jitter in execution time was negligible.

In conclusion, using dual thread priority in the Microgrid core gave significant
improvements in both run time and jitter, however when background tasks
placed stress on the memory system the benefits were not so obvious. Even so
there was always at least a halving of the RT task execution time (both maximum
and average over multiple executions) and jitter, when using priority threads
over non-priority threads. In addition there was no significant impact on the
execution time of the background task and in some cases the background task
execution was improved, even though the number of instructions executed
increased.



Multi-threaded processor for space applications | 30

4 Thread-level Redundancy for Fault Tolerance

The vulnerability of multi-core processors is increasing due to tighter design
margins and greater susceptibility to interference. Moreover, concurrent
programming environments are the norm in the exploitation of multi-core
systems. In this paper, we present an on-demand, thread-level, fault detection
mechanism for multi-cores. On-demand redundancy allows users to set the
redundancy scope in the concurrent code and is important to be able to manage
the overheads of redundant execution; not all code is sensitive to errors. To
achieve this we introduce a mechanism to provide redundant thread creation
and synchronization, which manages concurrency and synchronization between
the redundant threads via the master. This framework was implemented in the
Microgrid emulation, which is a multi-threaded, many-core processor with
single, in-order issue cores. It was evaluated using a range of programs in image
and signal processing, and encryption. Preliminary results show the
performance overhead for using redundancy in a kernel is less than 11% for
single core execution and is always less than 100% for all scenarios. This
efficiency derives from the platform's hardware concurrency management and
latency tolerance.

4.1 Background and Motivation

With multi-core systems now being mainstream these days, the number of cores
integrated into a processor will increase due to the inevitable technological
progress. However, the same trend in technology also make the future of multi-
core processors increasingly susceptible to both hard and soft errors. The
shrinking of feature size leads to more manufacturing defects, process variations,
and early lifetime failures [10]. Also, the reduction of design margins and the
transistor's threshold voltage can increase the soft error rate of certain noise
environments dramatically [11].

Redundancy is a classic solution for tolerating faults [12]. The key practical issue
is how and at what level to apply redundancy in multi-core processors. Spatial
redundancy such as IBM's S/390 G5 processor [13], Tandem S2 [14], Hewlett
Packard's NonStop Advanced Architecture [15] and Boeing 777's flight computer
[16] is not the most efficient approach, due to its large area and energy overhead.
Also, this approach lacks flexibility when redundancy is not necessary. In
contrast, temporal redundancy such as AR-SMT [17], SRT [18], SRTR [19] and
Black]ack [20] has its advantages in area overhead and flexibility but is limited
by the duration of error. Typically these approaches cannot detect hard or soft
errors lasting longer than the interval of two thread copies.

Although multi-core processors have a higher vulnerability, they also provide
natural extra hardware for fault tolerance. So multi-core processors based
thread-level redundancy (TLR) techniques such as DCC [10], CRT [21], CRTR
[22] and Reunion [23], which force two copies of a semantic thread to run on
different cores, combine the fault coverage of spatial redundancy with the
efficiency of temporal redundancy. They can detect both hard and soft errors
without adding extra hardware. However, these TLR techniques focus on single-
threaded environments. Much less attention has been paid to the design issues in



Multi-threaded processor for space applications | 31

concurrent programming environments; it is not a trivial extension to migrate
TLR from a single-threaded environment to a concurrent programming
environment. In particular, concurrent software already uses multiple cores
simultaneously for performance issues, and hence TLR must manage
simultaneous occupation of the cores by the concurrent software and its
replicates.

Meanwhile, many emerging applications allow for the discarding of individual
sub-computations with small qualitative impact [24]. This is a form of intrinsic
fault tolerance, which does not require extra architectural support. Also, many
commodity systems do not need high reliability and some can tolerant faults to
some extent, e.g. the odd pixel in video decompression cannot be noticed. Even
for mission critical systems, fault tolerance is not needed all the time, especially
when performance and energy are key considerations. In other words, most
applications do not require an investment in the cost of full redundancy. And the
most elegant solution is that fault tolerance is provided only when necessary, i.e.
redundancy on demand.

To address these two problems, this section of the report presents an on-
demand, thread-level, fault-detection framework in a concurrent programming
environment. This vertical framework includes support from the programming
model, compiler, ISA and micro-architecture, but none of the changes are on the
critical path of the system. In other words, the fault tolerance mechanism is
independent of the existing system. As with the other TLR mechanisms in multi-
core processors, we propose two thread copies of a semantic thread, which are
called the master and redundant thread respectively. They are forced to run on a
fixed pair of adjacent cores in order to detect both hard and soft errors. The
sphere of replication [18] includes the entire pipeline, the register file and L1
cache of each core. An assumption is made that the memory system is fault-free.
Also, we adopt a relaxed input replication technique, so as to avoid significant
changes to the existing cache hierarchies for redundant execution. The
divergence of any load value, induced by relaxed input replication, can be
corrected or recovered by the same mechanism employed for fault detection
[23]. Finally, the output of the two thread copies is compared to check whether it
is correct. Here we focus on the output to memory (i.e. stores) only, [/0
operations have not been considered at this stage but we note that memory-
mapped /0 would be covered by this scheme except where DMA controlled.

In summary then, the issues covered by this report are when, where and
particularly how a program should be duplicated to give high reliability. The user
or the run-time environment can specify when to protect against faults. Where
and how the duplicates are executed is the main technical contribution of this
research. Together, this makes the system more efficient and flexible as the
granularity of redundancy is a thread, which can be specified anywhere in the
hierarchical, threaded programming environment.

The main technique introduced is an intelligent redundant thread creation and
synchronization scheme, which adds as little as possible to the concurrency
management to automatically create and manage the synchronisation of both the
master and redundant threads automatically. When using a concurrent



Multi-threaded processor for space applications | 32

programming environment, we usually want to exploit it as much as possible.
Because of this hierarchical concurrency and thread independence are two
features of many concurrent-programming environments that affect the design
of a thread duplication scheme. In our scheme, we only allow the master thread
to create both master and redundant threads' child threads in order to avoid a
thread explosion in the hierarchy. Additionally the master thread maintains
synchronization between the redundant parent and its child threads. This
requires some changes to existing systems and in the case of the Microgrid a co-
design of hardware and system software.

4.2 Concurrent programming environment

The key feature of a good concurrent programming environments is to define
concurrency in such a manner that it can be easily and efficiently mapped onto
the available resources for execution, threads, cores etc., either statically or
preferably dynamically, such that the mapping is not defined in the program. The
latter provides for a more portable code and requires concurrent activities be
scheduled onto the same resource.

Generally, such systems can be modelled as a fork-join queue within a closed
queuing network. Each incoming workload is split into N tasks at the fork point,
and each of these tasks queues for service at concurrent service nodes before
joining a queue for the join point. It is possible to have a nested fork-join queue
in order to exploit concurrency at as many levels as possible. The resulting
concurrency tree is a very appropriate structure to show the concurrency
organization in a concurrent programming environment. Also, it is inevitable
that there are communications (or synchronizations) between sibling nodes or
between parent and child nodes.

Considering such a concurrency tree in a concurrent programming environment,
we present a redundancy strategy based on the granularity of any given node in
the concurrency tree and the sub-tree that it defines. In this strategy, we
duplicate the sub-tree defined by the user over which it is required to implement
fault detection. In order to avoid the node explosion that would occur if all nodes
in the tee duplicated their descendents, we only allow the master node to create
child nodes for both the master and redundant nodes. However, this breaks the
synchronization between redundant parent and child, as the redundant child is
created by master parent node. This means the redundant parent node will not
terminate. To address this, we pair master and redundant nodes at the fork
point, and the synchronization between redundant parent and child is achieved
via the master parent node.

In scheduling concurrency tree nodes to resources, we ensure that master and
redundant nodes are always executed on separate physical resources without
any virtualisation. To achieve this, the hardware on which the code is scheduled
is defined as fixed pairs of resources, such that although any program may
execute on all resources, the master and redundant workloads will always
execute on different resources in order to detect both hard and soft errors. For
example, if core-1 and core-2 are a fixed pair, then all of the master nodes
executing on core-1 will have their corresponding redundant nodes executed on
core-2 and vice versa. Hence, although both original and duplicated sub-tree can



Multi-threaded processor for space applications | 33

be virtualised across all physical hardware resources in the system, for any given
node in the tree, the master and redundant copies will always execute on fixed
pairs of physical resources.

The System Virtualization Platform (SVP) is a concurrent programming
environment designed by the Computer Systems Architecture group in
University of Amsterdam. It is a set of system services and language interfaces
for the exploitation of concurrency on many-core processor chips. In this
concurrency model, each concurrent node in a concurrency tree is called a
thread and all the same level concurrent nodes that are created by a parent node
are called a family of threads. Every thread can create families of its own, making
the model hierarchical. The hardware execution resource is called a place, which
is allocated at run-time prior to the family being created. Communication and
synchronization between threads can occur in two distinct ways. Communication
via the single, flat address space in memory is synchronised by the create and
sync events, such that data written by a thread prior to create can be consistently
read by its descendents and similarly data written by its descendents can be
consistently read by the parent following the sync event. In addition to this
communication may occur through special hardware-supported channels called
globals and shareds. Global channels are written once by the parent thread, at
any time, and may be read by any of its descendent threads, i.e. any of the threads
in the family created. Shared channels are defined between every consecutive
pair of threads in the family. Both types of channel provide data-flow
synchronisation.

In this report we have implemented the fault detection framework in the
Microgrid execution platform [1]and [25]-[27]. It is a multi-core system that
provides dedicated logic able to coordinate single-issue, in-order, multi-threaded
RISC cores into computation clusters on chip. It is a highly scalable and
configurable many-core architecture. Its machine language provides new
instructions to manage concurrency, which are direct implementations of the
SVP services. The platform is provided with the SL programming language [28]
and [29], which is a interface language to program this platform. SL is designed
as an extension to the standard C language (ISO C99/C11). It includes primitive
constructs to bulk create threads, bulk synchronize on termination of threads,
and communicate using word-sized data-flow channels between threads. It is
intended for use as the target language for higher-level parallelizing compilers.
Although the fault detection framework is a general one for all concurrent
programming environments, we will use some of the dedicated syntax and
concepts in the description of fault detection mechanism that come from the
Microgrid, SL language, and the assembly language of their cores, since the
Microgrid is the experimental platform here.

4.3 On-demand redundancy

We sketch a simple SL function to explain how to implement on-demand
redundancy and its related support from the programming model, compiler and
ISA. Table 4 shows a simple SL function and how it is augmented with on-
demand redundancy support and compiled to a sequence of instructions. This is
only part of a complete program. The programming model uses the notation
sl_create to dynamically define a family of threads on an index range.



Multi-threaded processor for space applications | 34

SL code:

int arrayl[len];
sl def (sum, void, sl shparm(int, s))
{

sl index(i);

sl setp(s, sl getp(s) +array([il])
}
sl enddef

sl def(t main, void)
{
sl create(,,start,limit, step,
block, , ftmode, sum,
sl sharg(int, s));
sl seta(s, 0);
sl sync();

int result = sl geta(s);

}
sl enddef
Alpha assembly:
<main>: <main>: <main>:
allocate Rpiacer Re1agr Reia allocate Rpiacer Re1agr Reia allocate/r RpiacesReiag/ReiasRrsia
setlimit Reigr limit allocate Rplace' IRflagerfid Pair Reig,Refiag
setblock Reigr block Pair Rfig,Refiag rmtwr Ryfig
create Reig setlimit Reig, limit setlimit Reig, limit
puts 0,Reiq,0 setlimit Ryfig,limit setblock Reigrblock
sync Reigr $1 setblock Rfigrblock create Refig
mov $1,$31 setblock R.¢iq,block puts 0,R¢i4,0
gets Rfigr 0,81 create Rfig sync Rrigqr $1
release Rfig create Ryfig mov $1,5$31

puts O,Rfid,O getS Rfidl O, sl

(a) puts 0,Ry£iq4,0 release Rfig

sync Rfidl sl

mov $1,831 (c)

gets Rfia, 0,51

release Reig

release Ryfig

(b)

Sparc assembly:
<main>: <main>: <main>:
allocate Rplacer Relagr Reig allocate Rplacer Relagr Reig allocate/r RpiacesReragsReiasRrfia
setlimit Rfidl limit allocate Rplace' IRflagerfid Pair Rfilerfid
setblock Rfidl block Pair Rfilerfid rmtwr erid
create Reig setlimit Reig, limit setlimit Reig, limit
puts 0,Rfiq,0 setlimit Ryfig,limit setblock Reigrblock
sync Reigr rl setblock Rfigrblock create Reig
mov %rl,%rl setblock R.fiq,block puts 0,Rfiq,0
gets Reigr 0,%1r2 create Reig sync Reigr 5rl
release Reig create Refig mov %rl,%rl

puts O,Rfid,O getS Reigr O, $r2

(a) puts 0,R.£i4,0 release Reig

sync Reigr rl

mov $rl,%rl (c)

gets Rfigr 0, %12

release Reig

release Refig

(b)

Table 4. Shows the compilation of a simple summation function with fault tolerance related

parameter ‘ftmode . The three sub-tables show the source code and the assembly for Alpha and
Sparc ISAs, For each ISA, the original assembly without fault tolerance attributes (a), the assembly
at the redundancy'’s start point (b), and the regular assembly within the redundancy's scope (c) are

shown.



Multi-threaded processor for space applications | 35

N.b. although this defines the concurrency available, the run-time system (in this
case implemented in the core's ISA) is free to run the family of threads
sequentially, i.e. in just one or more hardware thread slots. The on-demand
redundancy additions to SL and assembly languages when creating the
redundant function are highlighted.

Table 4 shows the simple summation function where sl_create is augmented to
use the parameter 'ftmode' (i.e. fault tolerance mode). There are two functions:
sum is responsible for the summation and ¢_main is responsible for creating a
family of sum threads to expose the concurrency explicitly in software. The
parameter 'ftmode’ is the only attribute that is added to the programming model.
It is used to determine the redundancy state of the family that will be created.
There are three states:

O NORMAL - Redundancy is not necessary, so its child family will not be
duplicated;

O START - Current thread is not duplicated, but its child family will be
duplicated. It is the beginning of the redundancy scope in the program;

O REDUNDANCY - Current thread is duplicated, and its child family will also be
duplicated.

Compiler support is relatively straightforward. It compiles the SL code in listing
Table 4 to assembly showed in listing Table 4(a, b, ¢) according to the fault
tolerance mode. For readability, we use symbolic register names rather than
numbered registers in the assembly. The listing in Table 4(a) shows the code
generated in the normal situation (i.e. without fault tolerance support). The
instruction allocate attempts to allocate the computing resources (i.e. place,
which is a set of cores in the implementation of Microgrid) on which to create the
family of threads according to its parameters: place identifier and some other
flags in Rpiace and Ryqg. If successful, the family identifier fid of the allocated family
entry on the first core will be written into Rsq. Then the properties of this family
will be set through set instructions, such as the total number of threads, and the
limit on number of hardware threads per core. Finally, this family of threads will
be created using the instruction create, see [1] for more details.

The listing in Table 4 (b) presents the assembly generated at the redundancy
scope's beginning. Generally, the compiler will duplicate all the instructions
relating to family creation and initialization, such as allocate, set, create, put, etc.
However, there are some issues that need to be considered. The instruction
allocate for the redundant family should generate a different place identifier
compared to the master family, as we dispatch each to a different core for hard
error detection. The master and redundant families need to be connected though
the instruction pair. The most important point is that the current thread, which
is executing the assembly of the listing in Table 4 (b), only synchronizes with its
master child family. Also the data returned from the child family of threads read
by the instruction gets will not be verified against its redundant child family
therefore the thread reads from its master child family only. This is because the
redundancy scope began from the current thread's child and hence the current
thread is out of redundancy sphere and is not to be protected.



Multi-threaded processor for space applications | 36

Table 4 (c) gives the assembly created within the redundancy scope. Because it is
within the scope, it means that both redundant and master threads will execute
it. So we do not extend the assembly as for the redundancy start point, which is
executed by one thread only. Three instructions, which are italic bold in the code,
are extensions to the ISA that give an elegant thread duplication solution in our
concurrent programming environment. More details about the thread
duplication strategy within redundancy scope and these extended instructions
will be discussed in Section 4.4.

The fault tolerance mode can only transit from NORMAL to START, to
REDUNDANCY. START is a temporary state that occurs once in the transition
from NORMAL to REDUNDANCY. The transition is irreversible, as it is not worth
supporting a reversal mode transition in hardware. Note that the reverse
transition occurs naturally on termination of the family created in fault tolerant
mode. In effect, what this scheme does is to label a node in the concurrency tree
and every thread below this label is within the sphere of redundancy. This can be
done at any number of nodes to create redundancy for those critical regions.
Thus the correct redundancy scope can be easily achieved with much lower
design complexity at the software level by arranging thread structure properly.

4.4 Intelligent redundant thread creation and synchronization

As described in section 4.3, the thread duplication strategy cannot be propagated
without change from the start point to the body of the redundancy scope because
only one thread executes the thread duplication code at the start point, but in the
body of redundancy, both master and redundant threads execute the thread
duplication code. Obviously, we cannot allow both master and redundant
threads to create their own child family, as this will lead to an explosion in the
number of threads created, whereas what is required is a single copy of each
thread in the concurrency tree.

As a result, allocation of new resources is not allowed in redundant threads. The
master thread will allocate double the resources as before but the redundant
thread will do nothing (i.e. allocate in Figure 20). However, usually a redundant
parent thread has to wait for the synchronization of its children to continue or
end its execution (i.e. sync in Figure 20). We use the master parent thread to
bridge this gap. There are two family identifiers returned for every allocation in
the master parent thread. One will be sent to the redundant parent thread so the
redundant parent thread eventually gets its resource from the corresponding
master parent thread without doing any allocation. This is achieved through the
communication protocol shown in Figure 20. The synchronization link is built
between redundant parent and child family. This is the main idea behind the
intelligent, redundant thread creation and synchronization. Because of this, all
the other instructions related to thread creation run without any modification.



Multi-threaded processor for space applications | 37

communication ,* ™, redundant parent
thread

master parent
thread

allocate \

*. | redundant child
n : family of threads

master child
family of threads

Figure 20. Intelligent redundant thread creation and sychronization

This strategy is supported in the ISA and at the micro-architecture level. Three
new instructions are added for thread duplication and its communication, over
and above those used already to support the SVP concurrency management in
hardware. However, these new instructions have a different operation in master
and redundant threads, as shown in Table 5. The instruction allocate/r in the
master thread is responsible for allocating cores for both the master and
redundant child families. The redundant thread only waits on its register for the
redundant child family's identifier, which is sent by the master thread. Then the
instruction pair in the master thread makes the master and redundant child
family known to each other, which is necessary for the communication between
master and redundant threads shown in Figure 20. Finally, the redundant child
family's identifier is returned to the master parent thread and will be sent to
redundant parent by the instruction rmtwr. There is no operation for pair and
rmtwr in the redundant thread. Up to now, two places for the master and
redundant child families are allocated, and the master and redundant parents
receive master and redundant child family identifier, respectively. Considering
the assembly in listing Table 4(c), all the subsequent thread creation related
instructions are depend on its family identifier, Rsq. So all these instructions do
not need to be modified to fit thread duplication, as we have already connected
parent thread and child family in both the master and redundant group, although
both master and redundant child family are allocated by the master parent
thread.



Multi-threaded processor for space applications

38

Instruction | Master thread Redundant thread
Send an allocation mes-
sage to the place with flag. | Set the output register
The master family iden- | Ry;q to pending; Send

allocate/r tifier will be returned to | Ry;4’s index to master
Ry;q, the redundant family | thread”.
identifier to R f;4.
Send a message to the des-

. tination place, which will
pair No-op

pair master and redundant
families.

Write the redundant family
identifier to the redundant
rmtwr threads Ry;gq, which was | No-op
pended by instruction allo-
cate/r in redundant thread.

* The creation process of master and redundant threads is lockstep
to ensure redundant thread receives master thread’s identifier. The
executions of these two threads are independent.

Table 5. new instructions and their operation

4.5 Thread Pairing

In order to support redundant thread creation and synchronization, the master
and redundant threads should be paired. As threads are organized in units of
families, master and redundant families should be paired as well. We add the
instruction pair to pair master and redundant families in an explicit way. In
contrast, thread pairing is implicit and implemented in micro-architecture level
using a quasi-lockstep method.

This thread pairing technique supports dynamic allocation of resources in the
constraint of real-time run-time environment. It can guarantee both master and
redundant families are executed in the same model, either sequential or parallel.
Both master and redundant families execute parallel code when their resource
requests are satisfied, or they will execute sequential code instead. Also, the
thread pairing technique allows master and redundant families have different
size of hardware multithreading window.

4.5.1 Family Pairing
We use instruction pair to implement the family pairing explicitly. The format of
instruction pair is:

pair Rriqa , Rriar

The instruction pair checks the values of Rsq and Rga and if they are not both
valid, it will set both of master and redundant family identifier as invalid to
indicate that resource allocation has failed. Consequently, both master and
redundant families will execute sequential code (as in normal execution), as
there are not enough resource for their parallel execution. If both Rsq and Rga are
valid, master and redundant families will execute the parallel code and the
instruction pair will send two similar pair messages to master and redundant
families respectively. When a family receives the pair message, it will set its
matching family identifier in its family entry, and transfer this message to its
next family on another core.



Multi-threaded processor for space applications | 39

m_delegateln m_delegateOut

Figure 21. Deadlock in the delegation network and its solution

In this way we guarantee that both master and redundant families execute the
same code, which depends on the value of family identifier. So the family
identifier should be reset in the instruction pair as mentioned above. In other
words, the registers Rfq and Rsa' are not only input but also output registers in
the instruction. This means that the pair message will generate a remote register
write message in the last core of the family.

In the delegation network of the Microgrid, there is one entry for each input and
output of a core. The pair message may cause deadlock as shown in the solid line
shown in Figure 21. In the cycle t, msgs in m_delegatOut of both core X and Y are
going to be written into m_delegateln of the other core. But both pair messages
produce new remote register write messages, which are going to be written to
the corresponding m_delegatOut. Hence we have deadlock.

In order to prevent deadlock, a buffer m_pair is added in each core to buffer pair
message. In Figure 21, the dotted line replaces the solid line tagged as RW. The
size of m_pair is same with the size of family table, which means this buffer can
keep all pair messages even if family table is fully used. Theoretically, the mutual
exclusion condition is removed as we provide one entry of buffer to each pair
message. There is only one pair message in a family.

4.5.2 Thread Pairing

Thread pairing is more complex than family pairing as it is dynamic and occurs
during thread creation and scheduling. We implement the thread paring
implicitly during their creation.

The lifetime of thread is split to four stages as shown in Figure 22: allocation,
activation, execution and termination. Thread creation includes allocation and
activation. In the allocation stage, a thread entry, thread local storage, and
registers are allocated for a thread. When the allocation has succeeded, this
thread will be queued in the ready list. Here, instructions of threads in ready list
are requested and the thread will be pushed onto active list when the
instructions are loaded in the L1 I-cache.

We use a quasi-lockstep method to pair threads at creation as shown in Figure
22. At the allocation stage, a redundant thread can be allocated as usual. When



Multi-threaded processor for space applications | 40

the allocation of the redundant thread is successful, a message (see
communication I in Figure 22) containing the master family identifier is sent to
the master family that will increase the redundant thread creation counter in
master family. The same allocation in the master thread can only proceed with
the condition that the redundant thread creation counter is lager than 0,
notifying that the redundant thread was already allocated in the paired core. It is
because of this that both master and redundant families have a sequential thread
creation procedure. It decreases the redundant thread creation counter after the
master thread allocation has succeeded.

After allocation, the master thread will send a message (see communication II in
Figure 22) to the paired core, which contains the master thread identifier and
logic index. The paired core searches the thread ready list looking for the
redundant thread, which is related to this master thread and sets the master
thread identifier field in the thread entry of the redundant thread. Up to now,
the thread pairing is done, and it is assymmetric. Only the redundant thread
knows its master thread, but the master thread does not know its redundant
thread.

At the activation stage, the redundant thread will check the master thread
identifier (mtid) parameter in the thread entry first. The nonempty mtid ensures
the instruction allocate/r in the redundant thread can send its Rrd’s absolute
address to the master thread. If the redundant thread is scheduled in the ready
list with an empty mtid field, it will be pushed into a specific ready list, which is
created only for buffering redundant threads without mtid. This prevents
deadlock caused by redundant thread when it stuck at the ready list due to mtid
being invalid.

Master and redundant threads are enforced to use same thread local storage
(TLS), which can decrease the fault detection latency. So we specify that only the
master thread can reserve and un-reserve TLS. The reservation and release of
TLS occurs at the allocation and termination stage of the thread respectively. As
we have a quasi-lockstep creation between master and redundant threads, the
master thread can reserve TLS before the execution of both master and
redundant threads. In order to make sure that the master thread releases TLS
after the termination of the redundant thread, the termination of the master
thread should only proceed after it receives the termination message from the
redundant thread, see communication III in Figure 22. The execution of the
master and redundant threads are independent.

® 4 @ _ ©] \ @,
master thread - ----------- y - | AR /'49‘

1/ i I,

® _ . @ ® @_
redundant thread ———>f(-----uonnon--- | =

t
-------- idle —>> busy — — — — » communication
@ allocation ® activation ® execution @ termination

Figure 22. The lifetime of master and redundant threads



Multi-threaded processor for space applications | 41

The resource allocation strategy in Microgird is dynamic and depends on the
current run-time environment. This means that the master and redundant
families may have different resources, such as hardware multithreading slots, as
they run on different cores independently. Under this quasi-lockstep creation,
master and redundant family can be executed correctly even if they have
different sizes of their hardware multithreading window. In other words, this
thread pairing technique allows master and redundant families to have different
maximum number of concurrent threads (i.e. block size).

4.6 Output comparison

Like the other thread-level redundancy techniques, we must also compare the
results of the master and redundant threads to detect faults. To achieve this, a
comparison buffer is added between the L1 D cache and secondary memory. This
buffer is shared by a core pair. As stated above, the core and private L1 cache
are contained in the sphere of replication in our fault detection framework. This
means that the other components by definition are out of the sphere, such as L2
cache and off-chip memory. These are assumed to be fault free. Each output (i.e.
store) should be stored to both L1 and comparison buffer first, then compared in
comparison buffer before being committed to secondary memory. The operation
of data input (i.e. load}) is the same as before: the data come from secondary
memory to L1 D cache. In this report, we do not address the issue of supporting
output comparison in I/0. However, we note that if this is memory mapped, then
the same mechanism for comparison that supports stores will be available.

As the redundant thread knows its master thread's identifier, which is explained
in Section 4.4, the comparison buffer is organized as a number of sets that are
indexed by both its core and master thread identifier. Furthermore, the master
thread writes data to the set specified by its identifier in the comparison buffer,
which is owned by the core it runs on. A store in the redundant thread writes
data to the set specified by its master thread. For example, if the master thread
(thread identifier is ¢;) runs on core i, and redundant thread (thread identifier is
tj) runs on core j, then the stores of these two threads will be sent to set t; in the
comparison buffer specified by core i.

Each set is a FIFO queue, as thread instructions are executed in order in the
Microgrid platform. This means that all the stores in one thread will be appended
to its dedicated set and compared in order. Each entry in a set has three fields:

1. The address of store;
2. The value of store;
3. The status flag (2 bits):
* 00 -- empty line;
* 01 -- written by master thread;
* 10 -- written by redundant thread.

When a set of comparison buffer receives data, the data will be written to the set
directly if the set is empty. Otherwise, it will check whether the data and the

head of the set come from the same thread. If they are, the data will be appended
to the end of the set. If they come from different threads, which mean master and



Multi-threaded processor for space applications | 42

redundant thread, then they will be compared. A fault is detected when they do
not match. If they do match, which shows the results are correct, the data will be
popped from the set and written to secondary memory. The pseudo code for the
output comparison is shown below.

function comparison (data) {
if set is empty
append data as head of queue;
else
if set->head.flag is NOT equals data's flag
compare set->head with data;
if they match
write data to secondary memory;
pop the head of queue;
else
a fault is detected;
else
if set is full
suspend current thread;
else
append data to the end of queue;
}

Any read request coming from L1 cache, will first search the set indexed by the
current thread. Data will be returned if it is available, otherwise the read request
will be sent to secondary memory as usual. The comparison buffer does not
change the memory protocol, which means it can be used with the Microgrid's
various memory interconnects.

4.7 Experimental results

4.7.1 Experimental platform

The thread-level fault detection framework is implemented in the Microgrid.
Figure 23 illustrates a Microgrid chip with a configuration of 128 cores, which is
the base platform we have used for all experiments. All cores on chip are
organized in a linear partitionable network for resource allocation and
concurrency management within an allocated cluster. It is worth mentioning that
there is a custom distributed cache protocol derived from [31][32]: memory
stores are effected at local L2 cache and updates are propagated and merged
with other copies. Upon an explicit barriers or bulk creation or synchronization
of threads, the update acknowledges must be counted by thread or family to
ensure memory consistency for the programming model. The hardware
parameters most relevant to this report are shown in Table 6, more details can
be found in [25][26][27].



Multi-threaded processor for space applications | 43

| DDR Channel | DDR Channel |
[ Root dli;ectory ' Root dli;ectory |

| | | | | | | [ external
I I I I T T T T H I/O

| | | | 1 1 1 [ 41 | ;FPU+
‘ cores

| | | | 1 1 1 1 - [ L2cache

COMA
directory

[ [ [ [ I I I I B
| | | | | | | | ;
\ [ \ B =C_:OMA
Off-chip T I Off-chip | | ring
110 network | DDR Channel || DDR Channel | VO network | |

Root directory  H  Root directory |

Figure 23. The Microgrid chip with 128 cores

Components Specification
Core
e Alpha ISA with SVP extensions
¢ In-order pipeline of 6 stages
o 1024 integer registers and 512 float registers
e 1.0 GHz frequency

L1 D Cache
o 16 sets with 4-way set associative
e 4KB capacity
e Write through
L2 Cache
e 512 sets with 4-way set associative
e 128KB capacity
o Write update
e Shared by 4 cores via a snooping bus
Distributed
Cache structure o Each sub ring has a directory and 8 L2 caches

e 4 root directories each connects to a DDR3-
1600 channel mapped to a DRAM bank

e Ring directories and evenly distributed root
directories from the top ring

Table 6. The specification of Microgrid

The simulator currently executes benchmarks in which the redundancy scope is
the complete benchmark, however, we only execute small kernels not large
applications. Selective redundancy and fault coverage are left to future work. The
six benchmarks include image processing kernels, FFT and encryption and are
used to evaluate the thread-level fault detection technique shown in Table 7.



Multi-threaded processor for space applications | 44

Instructions

Category | Benchmarks count Description
Image convolution | 28 million ;l;hgoséizo%f (;:1 igsln;:: ollﬁgldge
process- : 20 mill in to 6400*3200, and
1ng zoom 1n Mo | reduces each pixel from
24 bits to 8 bits in grey
grey Al
conversion | 11 million | conversion.
Signal
i1 Use a 64K phase lookup ta-
f;gcess— FET 19 million | 410" nd butterfly reduction.
0.05
. rc4 million The problem size is scaled
Encryption p:; (frzam with number of cores and
g 5 million hardware threads per core,
) i.e. 1Kbyte stream per
seal per stream hardware thread
per core )

Table 7. Description of benchmarks

4.7.2 Results

We use the performance of non-redundant benchmarks run in Microgrid as the
baseline and we call the non-redundant benchmark the base benchmark, and
benchmark with complete redundancy scope the redundant benchmark. We
evaluate the performance overhead when redundancy is introduced. The
performance overhead of a redundant benchmark is also called performance
penalty in this paper, which is defined as follows:

t
performance _ penalty = —<dant _ |

base

And tredundant iS the execution time of redundant benchmark, tpase is the execution
time of base benchmark.

The master and redundant threads are always distributed to different cores that
are fix-paired. We should distinguish the experimental results of the base
benchmark run on single core from that running on many cores. For the single
core base benchmarks, another core is used for the redundant execution, which
means a redundant hardware resource is added. However, there is no redundant
hardware resource added for many-core base benchmarks. For example, if the
base benchmark has 2 independent threads in total, and thread 0 and 1 run on
core 0 and 1, respectively. Then its redundant benchmark still runs on core 0 and
1 with master thread 0 and redundant thread 1 run on core 0, and master thread
1 and redundant thread 0 run on core 1. It shows that more resource contention
occurs in many-core redundant benchmarks.

Single core. In Figure 24, the bars from left to right for each benchmark
correspond to block size or number of streams (i.e. the number of threads per
core). This ranges over 1, 2, 4, 8 and 16, all later figures are organized like this.
Figure 24 shows that the performance penalty is less than 11\% for all scenarios,
which is mainly caused by output comparison. As the number of threads per core



Multi-threaded processor for space applications | 45

increases, the performance penalty reduces because the latency of the output
comparison can be tolerated by the hardware multithreading mechanism. It can
be seen that in some cases the performance of the redundant benchmark is
better than that of the base benchmark. We believe this is because the
comparison buffer moderates peak traffic rates onto the memory network. We
have, in past experiments, observed a degradation of performance at large
numbers of threads on these benchmarks due to correlated stores in many
threads saturating the memory network and causing a higher latency on
synchronization.

12
10
8
> 8
©
s - -
g 6
8
& 4
E
£
18
Q. i R
0 .— — | | — — ._. —
convolution zoom grey fft rc4 seal
-2

Figure 24. Performance penalty of single core base benchmarks

Many cores Before discussing the result of benchmarks run on many cores, we
would like to give a definition and a proposition, which is related to the results
analysis.

Definition. The parallel efficiency of a program is the ratio of execution time of
the concurrent part to the whole program.

For example, the concurrent and sequential parts of a program have an
execution time of 0.4 and 0.6 respectively, when executed sequentially. The
execution time of sequential part is constant but the execution time of the
concurrent part becomes 0.2 or 0.1 when 2 or 4 cores are used. Therefore the
parallel efficiency is 0.4, 0.25, 0.14 for 1, 2 and 4 cores.

Proposition. The performance penalty of a redundant benchmark running on
many cores in the Microgrid is approximately equal to the parallel efficiency of
its base benchmark.

For example, if the sequential execution time of the concurrent and sequential
part in the base benchmark is X and Y, considering the situation where the base
benchmark is run on N (N>1) cores, the parallel efficiency in the base benchmark
is approximated by:



Multi-threaded processor for space applications | 46

o

efficiency, ., = X

—+Y
N

And the execution time of base and redundant benchmarks may be
approximated by:

X
tbase = N + Y
2X
tredundanl = W + Y

The equations above are approximation as contention, scheduling and latency
tolerance among concurrent parts needs to be considered. As we know, the
redundant benchmark has twice the amount of work, so its execution time is

X
approximately twice that of the base benchmark (i.e. N ). However, the

sequential part is always run on single core, because of the allocation strategy of
Microgrid, and the cost of single core redundancy is small as mentioned before.
So we still use Y as an approximate value. Finally, we can get the performance
penalty of a many-core redundant benchmark as follows:

t
performance _ penalty = -4t _1,

base

The performance penalty varies in the many-core benchmarks (Figure 25) and is
related to the original efficiency of the base benchmarks and the distributed
cache system. Compared to the base benchmark, the performance penalty of the
redundant benchmark is always less than 100% even though it executes double
the number of instructions using the same single-issue, in-order core resource.
This is mainly attributable to the hardware multithreading and its ability to
tolerate latency.

convolution zoom grey

=
15}
3
=
15}
3
=
15}
5}

®
3

®

3

@
=}

»
S

performance penalty (%)
»
]

performance penalty (%)

N
S

. Py
3 2
performance penalty (%)
@
2

g 1IN I IN Iy e I ITIY a Iy IvIyiviyl

16 32 6 8 16 32 64 4 8 16 32 64
core number core number core number

it rca seal
_ 100 100 _ 100

g = £

z 80 % g0 z 80

g Z g

3 60 g 60 g 0

g g ¢

S 40 ;40 S 40

E £ 2 § 2

s 5

£ £ £

g o, el o oS-~ gc N0 T - P —— e

2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64
core number core number core number

Figure 25. Performance penalty of many cores base benchmarks}



Multi-threaded processor for space applications | 47

The block size in Figure 25 is based on the base benchmark. For example, a
scenario of N cores with a block size of M indicates that the base benchmark is
executed on M threads in each of N cores. However, the redundant benchmark is
executed in N cores with 2*M threads. The additional M threads are used by the
redundant copy. The performance penalty of 1 thread per core is always smaller
than other situations. It is less than 44% even in the computationally intensive
convolution program. It also relatively stable for different numbers of cores.
Going from 1 to 2 threads per core gives a significant speedup and it is shown
that a speedup of between 1.5 to 2 can be achieved for all the benchmarks here.

The general trend we can find in Figure 25 is that the more cores and threads
that are used, the less the performance penalty. Because for a given program, the
parallel efficiency becomes lower when more resources are used. The results
therefore confirm the prediction made above.

The relation between block size and performance penalty is not so clear, as the
distributed cache system is involved. Usually, the larger the block size, the
greater the performance penalty, because the efficiency of the base benchmark is
higher when a bigger block size is set. We also see some unexplained results with
a block size of 16 in zoom and rc4. We believe the reason is again as described
above in the case of the single core benchmark. The more cores used the greater
bandwidth demanded of the memory system, which makes it more likely that
there will be an impact from correlated stores on synchronization costs. It
appears that the comparison buffer mitigates this problem. Note that in any case
the redundant benchmark has twice the computational complexity (operations
per byte stored) as the base benchmark but only one store to the L2 cache occurs
for the two writes, one from each core.

We took rc4 as an example using 64 cores and ran some diagnostics to try to
explain this anomaly in more detail. We found that the messages in the cache
ring decreased by 55% (read-related by 75% and write-related by 44\ %) in the
redundant benchmark compared to the baseline, even though the total number
of read requests has doubled in the redundant benchmark (n.b. the number of
write requests is same). We believe that because the comparison buffer delays
each write it will relieve the congestion of cache ring. Remember that the cache
policy on L1 is non-allocating write through with a write update policy at L2. So
the comparison buffer acts like a write combining buffer delaying and
aggregating writes. In effect it allows more writes to be achieved without
generating an update message in the ring. Similarly as the combining buffer
delays the eviction of the cache line it can also increase the hit rate to existing
lines. Note that the encryption benchmarks have little locality between threads,
as each is an independent stream. Thus the redundant benchmark is able to
improve both the write and read hit rate and this is why the performance
penalty goes lower with the increasing of block/stream size in 64 cores of zoom
and rc4. Moreover, the rc4 redundant benchmark can have better performance
than baseline even though it has double number of threads and twice the work to
do. It is in effect highlighting the inefficiency of the distributed cache system,
which is sensitive to the quantity and distribution of messages at high load.



Multi-threaded processor for space applications | 48

The three image processing redundant benchmarks have a higher performance
penalty compared to the other benchmarks, as they are highly parallel
benchmarks with exceptional locality and hence have high parallel efficiency.
Although FFT is also high parallel, its communication is non-local, which means
that its parallel efficiency is constrained by contention in the cache ring. So again,
its redundant benchmark has much smaller penalty than image processing ones.
The encryption benchmarks have sufficient parallelism (one stream per
hardware thread) but lack locality as each stream is independent. Thus frequent
evictions of data cause the parallel efficiency of the base benchmark to be low
and the overhead of the redundant benchmark to be correspondingly low.

Finally, we note that all of the results confirm our proposition that the redundant
benchmarks' performance penalty is strongly related to the parallel efficiency of
base benchmarks.

4.8 Proposal for Fault recovery

4.8.1 Background discussion

In the above sections we have outlined a method in the Microgrid to identify
faults by executing paired threads on different processors automatically, when a
fault-tolerance option has been set by the programmer for a particular sub-tree
of the computation. However, when a fault is identified, it is necessary to initiate
arecovery from that fault as seamlessly as possible.

For fault recovery, it is necessary to capture all state from the unit of program
being recovered from and to commit this to outside only when it has been
confirmed that the unit being protected has completed successfully. Fault
recovery can be implemented in software or in hardware, or indeed a
combination of the two. Obviously re-execution of large units of code because of
an error has a time/energy impact. Hardware recovery may allow a finer grained
recovery and hence minimise this impact by constraining the re-execution to
smaller units of code. However, the later needs a hardware buffer for check-
pointing that comprises all processor state and memory side-effects even if the
latter are intermediate results. Also it loses performance due to checkpoint
saving and synchronization when the execution is fault-free. Furthermore, its
hardware overhead is heavy when the checkpoint content is large and complex.
In contrast, software recovery is coarser grained and does not need dedicated
hardware for checkpoint logging. It has no hardware overhead and hence
simplifies the hardware design. However, it may have long recovery time as it
may re-execute non-faulty parts of the program due to its coarse grained nature.

Another issue in the Microgrid is that because of its concurrency management
strategy it is extremely complex to implement a hardware recovery strategy for
as the concurrency management unit in each core produces too much data to
checkpoint. Meanwhile, we want to avoid a substantial cost to performance in
software recovery. However, we believe this is possible to implement some
hardware support for recovery using only the buffering we require for fault
detection, the constraints are on the complexity of the threads being recovered
from. Many Microgrid applications have few memory side effects per thread at



Multi-threaded processor for space applications | 49

the leaves of the concurrency tree and some may even tolerate errors
intrinsically.

Therefore we propose a fault recovery strategy that has a low impact on
performance combined with minimal additional hardware. This proposal
represents a co-design of hardware and software to implement a complete fault
recovery strategy in code protected the fault-tolerant scheme identified above. It
restores a faulty program using different schemes according to the memory side-
effects and dependencies of a program. This scheme combines a partial thread-
level hardware recovery with user-defined software recovery. The partial
thread-level hardware recovery re-executes a faulty thread to recover from a
detected fault in hardware. It does this automatically when the thread is
independent and has few side effects. It tries to make common situations fast but
provides only partial coverage. It is then the responsibility of the software to
provide check-pointing and recovery when hardware recovery fails or when an
error occurs that cannot be recovered from, i.e. where the thread is too complex
for partial thread-level, hardware recovery.

A dedicated software approach to recovery is likely to be considerable more
efficient than the same approach adopted in hardware for the following two
reasons:

1. Not all memory side effects need to be buffered, some will be temporary
results of a computation; hardware has no knowledge of this and must capture
all side effects before committing them, a software recovery scheme will be
aware of which data is live and which is not.

2. Often with iterative or many stage algorithms, new data overwrites old
and hence must be buffered; in a software recovery using an alternating, two-
buffer scheme, no copying overhead for the commit stage is necessary. For
example instead of A->A->A->A in an iteration, a software recovery scheme can
compute: A->B->A->B where A and B are arrays of data. Additional storage is
required but if any stage fails it is simply re-executed from the original input data
without any copying on commit.

The main contribution of this proposal is that it maximises the benefit from both
hardware and software recovery while avoiding their respective drawbacks. We
use hardware recovery for fine-grained recovery with less performance cost
recovery when the checkpoint requirements are small. At the same time, we use
software recovery to back up and provide a full recovery scope in case that any
errors in the program are out of the scope of the hardware recovery scheme due
to the complexity of their checkpoint requirements.

4.8.2 Fault-recovery proposal

The checkpoint buffer is the main constraint in hardware recovery. And memory
side effects are the main part of a checkpoint. All memory writes should be
committed only after checkpoint validation. Many applications that continue to
drive increases in chip performance include computer vision, data mining,
search, media processing, and data-intensive scientific applications. Many of
these applications can be expressed concurrently for the Microgrid, using many
independent threads and where each thread has few memory side effects. That



Multi-threaded processor for space applications | 50

makes it easy to recover from a detected fault in a thread using automatic re-
execution of the offending thread in hardware, without checkpoints, as memory
transactions for each thread are buffered in the fault-detection comparison
buffer.

Our proposed partial thread-level re-execution recovery scheme in hardware
automatically targets these emerging applications. For more complex
applications, where thread may specify more writes to memory or when threads
are dependent upon each other and make use of thread-to-thread
communication, the applications or units of them will be protected by software
recovery. Software recovery then, is the last line of defense when hardware
recovery fails. This is summarised in Figure 26.

Thread start
T.St-- output comparison

N Set T.Re = 0;
TSt=1? Error? Clean local registers.

Y Y

| Remove the data in CompBuffer |

Commit all data in
CompBuffer to memory

Set F.error_flag = 1

; Thread
termination

Figure 26. Overview of the hardware/software co-design approach to fault recovery in Microgrid

4.8.2.1 Partial thread-level hardware recovery

Partial thread-level hardware recovery is a scheme where thread will be re-
executed automatically for recovery without software intervention when a fault
is detected. Only a re-executable thread can be recovered by the partial thread-
level hardware recovery scheme. A re-executable thread is a thread that satisfies
all of the following conditions:

1. the thread is independent, i.e. does no communicate to other threads by
register sharing or copying;

2. there are no branches within the thread, otherwise the number of stores
made can not be bounded;

3. there are no family creation within the thread;

4. global registers must not changed during thread execution, note that this
is a requirement for determinism as any thread in a family may update a
global and in any order;

5. the thread has few store instructions, where the number may be limited
by implementation.



Multi-threaded processor for space applications | 51

Programs such as: matrix multiplication, image processing, FFT etc, all comprise
mostly re-executable threads.

The above conditions are checked on compilation. A thread will be tagged as re-
executable when all five conditions are meet. The compiler also counts the
number of store instructions, which is used in the output comparison stage. In
practice, all stores from a thread are kept in the comparison buffer until all
writes from the paired threads have been verified.

Thread start
T.St-- output comparison

N Set TRe = 0;
T.St=1? Error? Clean local registers.

Y Y

| Remove the data in CompBuffer |

Commit all data in
CompBuffer to memory

Set F.error_flag = 1

Thread
L—————> L
termination

Figure 27. Partial thread-level hardware recovery process

From implementation perspective, we need to set a threshold (e.g. 4) for number
of store instructions, which are checked, i.e. condition 5, in compilation which is
constrained by the implementation choices. Also, two parameters are added to
all thread contexts:

* Re (1bit): indicating whether the current thread is re-executable or not.
* St (2bits): a counter of the number of store instructions in the thread.

The partial thread-level hardware recovery process is shown in Figure 27. Once
an error is detected, all the data in the comparison buffer for the current thread
is removed. Then the thread will be restarted if it is a re-executable thread.
Before thread re-execution, the local registers of the thread are cleaned as they
may be polluted by the last faulty execution. Meanwhile, the re-executable flag of
the thread is reset as thread re-execution is only allowed once. If the recovery
fails or the thread is not re-executable, it will set the error flag in family table
entry, which can be monitored in software.

4.8.2.2 Software recovery

For programs outside of the scope of partial thread-level, hardware recovery, we
support a software recovery scheme. In general, we expose the error from
hardware to software and make the software responsible for recovery. We use



Multi-threaded processor for space applications | 52

family synchronization to expose the hardware fault to software if there is a
fault.

When an error is detected in a thread, it will check whether current thread is re-
executable or not. If it is, the thread will be re-executed in hardware
automatically. If it is not a re-executable thread or if the re-execution recovery
fails, then the thread will expose this error to family by setting the error flag in
the family entry. In addition to this the hardware must pre-empt any continuing
computation as we can safely assume any data produced will be discarded in the
software recovery. As pre-emption is implemented in hardware, no signal need
be raised or acted upon. The normal synchronisation event will occur sooner and
the error code can be checked by the code at sync to determine any subsequent
action. Currently the Microgrid supports two forms of pre-emption:

1. Break a family. This soft pre-emption causes the thread creation process
to cease mapping software threads to hardware resources and then
allows all currently executing threads to terminate normally. This is not
implemented recursively and if a running thread creates new threads,
these must all be executed before the thread terminates. It is useful for
families of leaf threads such as the stages in an FFT.

2. Kill a place. Currently not implemented but is the better option so long as
the unit of software being protected has the exclusive use of a place (a set
of cores).

We propose to make the choice of pre-emption software selectable, so that when
an error occurs the programmer has already selected which of the above options
will be used for pre-emption. When a family synchronizes, the error flag is
checked. If the error flag is set, the family will transfer the error information to
software through the synchronization. Finally, the programmer is responsible for
check pointing and software recovery.

A program with software recovery support is shown below:

sl create (, , start, limit, step, block, sl ft, sl kill, func);
sl sync(error_ flag);

if (error_ flag)

then recovery;

The keyword parameter sl__ft shows that the family will be created is in the
scope of redundancy, i.e. the family is protected by fault detection and recovery.
The flag sl_kill indicates that the programmer wishes to kill the place rather than
the default of using break. The error_flag is transferred from to hardware to
program, and is used as a condition by the software to initiate whatever recovery
process is necessary. Note that this code is simplified as other information can
also be passed back via the sync code.

4.9 Conclusions on Thread-level Redundancy

Fault tolerance will be inevitable as multi-core systems become mainstream.
There is no doubt that concurrent programming is also an important opportunity
to improve the efficiency of multi-core processors. In this context, this paper



Multi-threaded processor for space applications | 53

presents and implements an on-demand fault detection framework that has been
added to an existing multi-threaded, many-core chip emulation.

By necessity the framework has been co-designed across multiple layers,
including programming model, compiler, ISA and micro-architecture. This cross-
layer cooperation makes the fault detection and recovery mechanism much more
flexible and efficient. It also makes on-demand redundancy possible. When
required there is automatic creation and synchronisation of both master and
redundant child families. The scheme requires only a flag in the instruction
creating the family and the compiler and hardware cooperate to create and link
these threads created. It also avoids any redundant thread creation by allowing
only the master threads to continue to create further threads and in doing keeps
the synchronization channel between redundant parent and its child threads.

Experiments presented in evaluating this scheme show results on the overhead
of executing the redundant thread across a range of kernel benchmarks with a
range of concurrency resources (threads per core and numbers of cores). We
have presented and verified a proposition that the overhead of redundant
execution is strongly dependent on the parallel efficiency of the base benchmark.
The results show that for a single core benchmark, where additional resources
are brought into play, the performance penalty for redundancy is less than 11%.
For the many-core situation, the penalty is never larger than 100% even though
the redundant benchmark has twice the dynamic instruction count. This is
attributed to the latency tolerance of hardware multithreading, especially in
situations where the parallel efficiency is poor on the baseline. In some cases we
even show that the redundant benchmark has a better performance than the
baseline and confirm that it places a smaller load on the shared resources due to
a modified scheduling of writes to L2 cache.

Although not implemented in the emulation platform, the report also outlines a
strategy for fault recovery. This uses a combination of hardware and software
support, the latter provided by the programmer of the application. The hardware
support does not require any additional hardware but relies on the
master/redundant thread comparison buffer used in this scheme. It delays
writes to L2 cache from simple threads with few writes and is able to restart the
thread if an error is detected. Because of the nature of the programming model
for the Microgrid, where all independent computations are exposed as threads
(e.g. all independent loop iterations), this covers the common case. For threads
that are not "simple"”, when an unrecoverable error is detected the remaining
work in the region being protected is aborted a return code is passed to the code
through the synchronisation primitive, this allows the programmer to write code
in a way that allows efficient check pointing on these regions of code.

This work will be continued by Fu Jian at the University of Amsterdam and
further results on the implementation of a complete fault detection/recovery
and simulation using fault injection may be of future interest to ESA.



Multi-threaded processor for space applications | 54

5 References

[1]

[2]

[3]

[5]

8]

Mike Lankamp, Raphael Poss, Qiang Yang, Jian Fu, Irfan Uddin and Chris
R. Jesshope (2013) MGSim - Simulation tools for multi-core processor,
University of Amsterdam, arXiv:1302.1390v1 [cs.AR],
http://arxiv.org/abs/1302.1390

J. M. Calandrino and J. H. Anderson (2008) Cache-Aware Real-Time
Scheduling on Multicore Platforms: Heuristics and a Case Study, in Proc.
20th Euromicro Conf. on Real-Time Systems, ECRTS '08, pp. 299-308.

H. Leontyev and ]. H. Anderson (2007) Tardiness Bounds for EDF
Scheduling on Multi-Speed Multicore Platforms, in Proc. 13th IEEE Intl.
Conf. on Embedded and Real-Time Computing Systems and
Applications, RTCSA 2007, pp. 103-110.

J. H. Anderson, ]. M. Calandrino and U. C. Devi (2006) Real-Time
Scheduling on Multicore Platforms, in Proc. 12th IEEE Real-Time and
Embedded Technology and Applications Symposium, RTAS 2006, pp. 179-
190.

J. M. Calandrino, D. Baumberger, L. Tong, S. Hahn and J.H. Anderson
(2007) Soft Real-Time Scheduling on Performance Asymmetric Multicore
Platforms, in Proc. 13th IEEE Real Time and Embedded Technology and
Applications Symposium, RTAS '07, pp. 101-112

S. Euiseong, J. Jinkyu, P. Seonyeong and L. Joonwon (2008) Energy
Efficient Scheduling of Real-Time Tasks on Multicore Processors, IEEE
Transactions on Parallel and Distributed Systems, vol.19, pp. 1540-1552.
Barre Jonathan, Rochange Christine and Sainrat Pascal (2008)
Predictable Simultaneous Multithreading Scheme for Hard Real-Time,
Proc. of the 21st international conference on Architecture of computing
systems, pp.161-172.

Marco Paolieri, Jorg Mische, Stefan Metzlaff, Mike Gerdes, Eduardo
Quinones, Sascha Uhrig, Theo Ungerer, and Francisco J. Cazorla (2013) A
Hard Real-Time Capable Multi-Core SMT Processor, ACM Transactions on
Embedded Computing Systems, to be published in 2013.

The parMERSA project, http://www.parmerasa.eu/

C. LaFrieda, E. Ipek, J. F. Martinez, and R. Manohar (2007) Utilizing
dynamically coupled cores to form a resilient chip multiprocessor, in Proc.
of the 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 317-326.

S. Hareland, ]. Maiz, M. Alavi, K. Mistry, S. Walsta, and C. Dai (2001) Impact
of CMOS process scaling and SOI on the soft error rates of logic processes,
in IEEE Symposium on VLSI Technology, pp. 73-74.

J. von Neumann (1956) Probabilistic logics and the synthesis of reliable
organisms from unreliable components, in C. E. Shannon and J. McCarthy,
editors, Automata Studies, pp. 43-98.

T. Slegel, 1. Averill, R.M., M. Check, B. Giamei, B. Krumm, C. Krygowski, W.
Li, J. Liptay, ]. MacDougall, T. McPherson, J. Navarro, E. Schwarz, K. Shum,
and C. Webb (1999) IBM’s S/390 G5 microprocessor design,” IEEE Micro,
vol. 19, no. 2, pp. 12-23.

D.Jewett (1991) Integrity S2: a fault-tolerant Unix platform, in 21st
International Symposium on Fault-Tolerant Computing (FTCS), pp. 512-
519.



[15]

[20]

[21]

[25]

Multi-threaded processor for space applications | 55

D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine, J. Klecka, and J.
Smullen (2005) NonStop advanced architecture, in Proc. of the 2005
International Conference on Dependable Systems and Networks (DSN), pp.
12-21.

Y. Yeh (1996) Triple-triple redundant 777 primary flight computer,” in
Proc. 1996 IEEE Aerospace Applications Conference, pp. 293-307.

E. Rotenberg (1999) AR-SMT: a microarchitectural approach to fault
tolerance in microprocessors, in 29th Annual International Symposium on
Fault-Tolerant Computing (FTCS), pp. 84-91.

S. K. Reinhardt and S. S. Mukherjee (2000) Transient fault detec- tion via
simultaneous multithreading, in Proc. 27th Annual International
Symposium on Computer Architecture (ISCA), pp. 25-36.

T. N. Vijaykumar, I. Pomeranz, and K. Cheng (2002) Transient fault
recovery using simultaneous multithreading, in Proc. 29th Annual
International Symposium on Computer Architecture (ISCA), pp. 87-98.

E. Schuchman and T. Vijaykumar (2007) BlackJack: hard error detection
with redundant threads on smt, in 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pp. 327-337.

S. S. Mukherjee, M. Kontz, and S. K. Reinhardt (2002) Detailed design and
evaluation of redundant multithreading alternatives, in Proc. 29th Annual
International Symposium on Computer Architecture (ISCA), pp. 99-110.
M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I. Pomer- anz (2003)
Transient-fault recovery for chip multiprocessors, in Proc. 30th Annual
International Symposium on Computer Architecture (ISCA), pp. 98-109.
J.C.Smolens,B.T.Gold,B.Falsafi,and].C.Hoe (2006) Reunion: complexity-
effective multicore redundancy, in Proc. of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 223-234.

M. de Kruijf, S. Nomura, and K. Sankaralingam (2010) Relax: an
architectural framework for software recovery of hardware faults, in Proc.
37th Annual International Symposium on Computer Architecture (ISCA),
pp- 497- 508.

T. Bernard, K. Bousias, L. Guang, C. Jesshope, M. Lankamp, M. van Tol, and
L. Zhang (2008) A general model of concurrency and its implementation
as many-core dynamic risc processors, in Intl. Conf. on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS), pp.
1-9.

Q. Yang, C. Jesshope, and J. Fu (2011) A micro-threading based
concurrency model for parallel computing,” in IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd
Forum (IPDPSW), pp. 1668- 1674.

R. Poss, M. Lankamp, Q. Yang, J. Fu, M. W. van Tol, and C. Jesshope (2012)
Apple-CORE: Microgrids of SVP cores (invited paper), in Proc. 15th
Euromicro Conference on Digital System Design (DSD).

R. Poss (2012) SL—a “quick and dirty” but working intermediate language
for SVP systems, University of Amsterdam, Tech. Rep. arXiv:1208.4572v1
[cs.PL], http://arxiv.org/abs/1208.4572

R. ‘*kena’ Poss (2011) SL language overview, University of Amsterdam,
Tech. Rep., : https://notes.svp-home.org/sl15.html



[30]

[31]

Multi-threaded processor for space applications | 56

M. Lankamp and R. Poss, “SVP extensions to the Alpha ISA,” University of
Amsterdam, Tech. Rep., March 2011. [Online]. Available:
https://notes.svp-home.org/mgsim2.html

L. Zhang and C. Jesshope, “On-chip COMA cache-coherence protocol for
microgrids of microthreaded cores,” in Proceed- ings of the 2007
Conference on Parallel Processing (Euro- Par), 2008, pp. 38-48.

T. D. Vu, L. Zhang, and C. Jesshope, “The verification of the on-chip COMA
cache coherence protocol,” in Proceedings of the 12th International
Conference on Algebraic Methodology and Software Technology, 2008,
pp. 413-429.



