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1 INTRODUCTION 

1.1 Purpose and Scope 
This document is the Final Report and Executive Summary of the SystemC Co-Simulation 
SoC Validation Platform (SoCRocket)  
 

1.2 Executive Summary 
The goal of this project was to design the SoCRocket TLM Library, a common TLM 
2.0 Library, but designed to simulate in particular designs of the Aeroflex Gaisler 
GRLib. The modeled TLM IP cores are modeled and verified TLM counterparts to 
the core components from the Gaisler library. The parameters in the platform 
leon3mp are matching the parameters from the GRLib.  
Moreover the library is extendable with any needed IP Core as shown with the 
external LEON3 or SpaceWire IP, which are now deeply integrated in the library. 
Therefore this platform is an ideal starting point to design and shape new 
architectures for new systems. It helps to identify risks and flaws in early stages 
and allows early software development and simulation as close to the real-thing as 
possible. 
All declared goals were reached including optional goals. Even with regards to 
having to work without test vectors. We had to debug low-level dependency 
components, for which we provided a patch set to fix the found issues. 
 

1.3 Revisions 
The following table will be updated during the course of the project. 
 

Version Date Description 
0.1 21/11/12 Initial document 

   

   

   

 Table 1 - Revisions of this document  

 

1.4 Abbreviations and Acronyms 
Acronym  Description  
AMBA Advanced Microcontroller Bus Architecture 
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Acronym  Description  
API Application Programming Interface 

AXI Advanced eXtensible Interface 

AT Approximately Timed 

CA Cycle Accurate 

CAD Computer Aided Design 

DF Design Flow 

EDA Electronic Design Automation 

ESL Electronic System Level 

FPGA Field Programmable Gate Array 

GCC GNU Compiler Collection 

HW  Hardware  

IDA Institute for Computer and Network Engineering at TU Braunschweig 

IP Intellectual Property 

LT Loosely Timed 

MPSoC Multi-Processor System-on-Chip 

OS Operating Systems 

OSCI Open SystemC Initiative 

RTEMS Real Time Executive for Multiprocessor Systems 

RTL Register Transfer Level 

SW  Software  

SoC System-on-Chip 

SVN Subversion 

TLM Transaction Level Modeling 

VHDL VHSIC Hardware Description Language 

VHSIC Very High Speed Integrated Circuit 

VP Virtual Platform 

VPI Virtual Platform Infrastructure 

WP Work Package 

waf Waf Build System 

 Table 2 – Abbreviations and Acronyms  
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1.5 Objectives of the study 
The goal of this study is the development of a design flow (DF) for Virtual Platform 
(VP) implementation and validation. The study includes the modeling and the 
verification of Transaction Level Modeling (TLM) components and the design of a 
proof of concept VP. 

1.6 Methodology of the study 
As shown in Figure 1 the project is comprised of two technical phases (WP1000 
and WP2000), which are each split into several work packages (WP). At the end of 
each phase a review meeting was held to check the relevant achievements.  
In the following, we describe both phases and all WPs in detail. 
 

 
Figure 1 - Study logic 

 
 
1.6.1 Phase 1: Analysis & Design of Key IPs (WP 1000) 

The objective of the first technical phase is to develop the necessary high-level 
SystemC models of existing RTL IP cores to produce a VP representative of a 
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typical space SoC. The models are designed in a way, so that they can be reused 
and adapted to different platform configurations. 
 
1.6.1.1 Task 1: Survey of tools and techniques (WP 1100) 
In Task 1, we have evaluated the required SystemC IPs and determined the best 
tools, techniques and methodologies to develop their high-level models according 
to the SystemC TLM 2.0 standard and validate them. 
The resulting work can be found in RD02. 
The methodology for modeling and validation of the TLM SystemC IP has been 
defined during the course of this task. Details are presented along with the 
associated work packages in sections: 
1.6.1.2  High-Level Modeling of SystemC IPs (WP 1200) 
1.6.1.3  Verification of TL Models (WP 1300)  

Subtasks: 
! Review the existing specifications of the required IPs 
! Refine a methodology for the development and validation of the required 

TLM SystemC IPs based on the state of the art ESL design 
! Identify appropriate tools for virtual platform generation 

Outputs: 
! Development plan 
! IP requirement specification 

 
1.6.1.2 Task 2: High-Level Modeling of SystemC IPs (WP 1200) 
In Task 2, we developed high-level models of the required IP blocks (Table 3) 
using SystemC language and adhering to the TLM 2.0 standard. Each IP block is 
available in both Loosely Timed and Approximately Timed TLM 2.0 coding styles. 
The models will come with appropriate scripts and test benches for compilation 
and verification of functionality. 
 

No. IP 

1 AMBA AHB 

2 Aeroflex Gaisler GRLIB MCTRL Memory Controller or equivalent 

3 A memory model working with IP 2 

4 A Harvard L1 cache (including support of cache coherence protocols, 
snooping and write invalidate) 

5 A SPARCv8 MMU or equivalent 

6 Aeroflex Gaisler GPTIMER General Purpose Timer Unit or equivalent 
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7 Aeroflex Gaisler IRQMP Interrupt Controller or equivalent 

Table 3 - List of IP models from development plan 
In addition to the components listed in the development plan as listed in Table 3 
we delivered supplementary components listed in Table 3. 

No. IP 

8 AMBA AHB to APB Bridge 

9 Aeroflex Gaisler GRLIB APBUART 

10 AHB System Profiler 

Table 4 - Supplementary IP models 
The AMBA bus models are designed with the GreenSocs AMBA Kit. The AMBA Kit 
contains a flexible bus model, which can be templated to act as APB, AHB or AXI. 
Which makes the system work instantly with AXI as well. However, not all features 
of the GRLIB implementation are supported. Particularly the plug & play extension 
was missing. We implemented this extension without compromising the AMBA Kit. 
Decisions on this topic were done in close interaction with ESA. 
For the modeling of the remaining IP, we followed the TLM methodology 
recommended by OSCI. Initiator and target peripherals are modeled as orthogonal 
components separated by well-defined interfaces. Each component is divided into 
a behavior section, a timing section, a power section, and a storage and 
synchronization section (Figure 2) closely interacting with each other. 

 
Figure 2 - TLM methodology 

 
For modeling the SystemC IP, we made use of the GreenReg open source 
framework for device and register modeling with TLM 2.0. 
Subtasks: 

! Development and documentation of the required SystemC TLM IPs 
! Development of test benches 
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! Functional model validation 
Outputs: 

! SystemC TLM 2.0 model library of the required IPs 
! Model User Manuals and Development Documents 
! Compilation scripts, needed libraries, and test benches for each IP model 

 
1.6.1.3 Task 3: Verification of TL Models (WP 1300) 
In Task 3, we evaluated the timing accuracy and simulation speed of each 
SystemC IP model and compare against the RTL implementation.  
 
The results of the verification process are reported in the IP Performance and 
Verification Document. 
 
Subtasks: 

! Compare the developed SystemC IP models with their RTL counterparts to 
determine their timing accuracy 

! Determine the simulation performance of each IP 
! Update any eventual IP not meeting the requirements 

 
Outputs: 

! IP Performance Document 
! Updated SystemC Model Library 

 
1.6.1.4 Task 4: Power Modeling (WP 1400) 
In Task 4, we augmented the SystemC IP library with accurate power models for 
the individual IP blocks (e.g. processor, cache, memory, etc.).  
In order to set up power models, we have synthesized and layouted the given RTL 
IP with Cadence Encounter using TSMC 90nm CMOS Technology as reference. 
The synthesized designs did undergo statistical power analysis to determine the 
average energy cost per activation for each block. To step up accuracy, the 
functionality was divided into events, which add up to the overall power budget 
during power simulation. These individually created power models were integrated 
into the SystemC TLM IP library models. Special care was taken that power 
modeling has only neglectable impact on the simulation speed of the SystemC IP. 
As indicated in Figure 2, the implementation of the power modeling functions are 
entirely independent from the functional behavior of the model. 
Subtasks: 

! Perform logic synthesis, physical synthesis, and power analysis of RTL IP 
! Add power modeling capabilities to the TLM interfaces 
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! Implement power models for the individual IP blocks 
Outputs: 

! Updated SystemC Model Library 
1.6.2 Phase 2: VP Development and Validation (WP 2000) 

The objectives of the second phase are the definition of the DF, the verification of 
the SystemC Model library in a proof of concept VP and the demonstration of a 
high-level DSE. 
1.6.2.1 Task 5: Definition of the Design Flow (WP 2100) 
In Task 5, we have defined the DF and produced the VPI necessary to perform the 
communication, performance, and SW debugging analysis specified in Annex 1.2 
of the RD01. A mechanism was developed to build such a VPI from the SystemC 
IP blocks developed in the previous tasks. 
The appropriate IP interconnection infrastructure is defined to allow the SystemC 
IP models to cooperate in a VP. This infrastructure supports transactors to connect 
models specified at different levels of abstraction. These transactors are written in 
SystemC and the interconnection methodology is outlined in the Interconnection 
Methodology Summary. 
The VPI: 

! Allows the interconnection of TL and RTL models of the specified IPs 
! Provides a tool for the system- and high-level design phases of an 

embedded system, allowing HW/SW co-design and early system validation 
! Allows Integration, verification and debugging of hardware IPs 
! Allows early software development on the target architecture:  

debugging (such as access to registers, linking to source code, 
breakpointing, etc.), monitoring, and profiling of application software 

! Allows performance analysis: cycle count, transaction count, execution time, 
communication bandwidth and throughput 

Subtasks: 
! Produce the VPI 
! Determine the information that the VPI analysis tools need from the 

SystemC IP models 
! Define an efficient mechanism to obtain such information during simulation 
! Define the appropriate IP interconnection mechanisms 
! Implement the appropriate transactors 
! Produce a first iteration of the DF document 

Outputs: 
! Updated SystemC IP Model Library / Transactor Library 
! Design Flow User Manual 
! Design Flow document: Interconnection infrastructure and analysis capability 
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1.6.2.2 Task 6: Proof-of-concept VP Development (WP 2200) 
In Task 6, we defined and implemented the proof-of-concept VP (Figure 3) using 
all the SystemC IP models, the VPI and DF from the previous tasks. This VP runs 
software stimulating all the connected IP models.  

 
Figure 3 - Proof-of-concept VP hardware model 

The proof-of-concept VP contains a single CPU in a simple configuration.  
The software running on the VP can be any SPARC LEON3 executable. In our 
example we used bare-metal MiBench tests and in the high-level DSE 
demonstration an application containing RTEMS OS (Figure 4).  
 

 
Figure 4 - Proof-of-concept VP software model 

Appropriate test benches have been selected from the MiBench suite (Table 5). All 
C Code is going to be compiled with GCC and will be linked against the Gaisler 
bare-metal Newlib C library. 
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Number Benchmark Application Domain 

1 Quick Sort Automotive / Industrial 

2 JPEG Consumer 

3 Textsearch Office 

4 Dijkstra Network 

5 AES Security 

6 FFT Telecommunication 

Table 5 - MiBench (selected) 
 
The proof-of-concept VP was implemented using the DF, which was updated with 
all the lessons and experience gained during the actual VP development. The VP 
was profiled and benchmarked, reporting its simulation performance in 
transactions per second, as specified in Annex A 1.3 of the RD01. 
The proof-of-concept VP: 

! Demonstrates the application of the DF on a typical SoC, showing how it can 
be used for performance analysis and design trade-off 

! Is a single distributable application that acts as a virtual development board, 
on which software can be run and performance can be estimated. 

Subtask: 
! Interconnect all the IP models (both developed in Task 2 and ESA provided) 

using the VPI from Task 4 
! Develop and/or adapt the software to be run on the VP 
! Benchmark the produced VP 
! Update the DF based on lessons learned 

Outputs: 
! The PoC VP package (SystemC source, build scripts, data files, 

testbenches, VP development document, VP user manual, etc.) 
! PoC VP Definition, Interconnect and Performance Report 
! Updated PoC Methodology 

 
1.6.2.3 Task 7: High-Level DSE Demonstration (WP 2300) 
The proof-of-concept VP was used in conjunction with the VPI to demonstrate its 
use for high-level design space exploration (DSE). It was extended with multiple 
CPUs (up to 16). The VP ran a set of application benchmarks (Table 5) on top of 
RTEMS OS. Within these simulations, system performance and power dissipation 
was measured for different configurations of the platform. 
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The main architectural parameter to be modified during the DSE is the number of 
CPUs in the system. As an additional parameter, the cache size may be modified. 
Subtasks: 

! Port the application benchmarks to the PoC VP 
! Run a set of simulations, varying the architectural parameters of the system 
! Report the variations on system performance and the best and worst 

configuration 
Outputs: 

! High-Level DSE Report 
! Final Report and Executive Summary 

 

1.7 Achievements 
All declared goals were reached including optional goals. Even with regards to 
having to work without test vectors. We had to debug low-level dependency 
components, for which we provided a patch set to fix the found issues. 
The following objectives were fully reached and acquired in agreement with the 
ESA: 
- High-Level Modeling of SystemC IPs AMBA AHB Controller, Aeroflex Gaisler 

GRLIB MCTRL Memory Controller, A memory model, A Harvard L1 cache, A 
SPARCv8 MMU, Aeroflex Gaisler GPTIMER General Purpose Timer Unit and 
Aeroflex Gaisler IRQMP Interrupt Controller 

- Verification of the mentioned TL Models  
- Updating the SystemC Model Library with a power modeling framework and 

providing initial power values 
- Implementing a first Virtual Platform and manufacture a Design Flow for 

creating such VPs 
- Providing a proof-of-concept VP designed with the leon3mp platform in mind 
- Providing software Tests for the Proof-of-concept VP, plus ensuring that 

RTEMS runs on the VP 
- DSE Demonstration to show how to run a DSE on a generated VP 

 
In addition the modeling of the following SystemC IP Models: AMBA AHB to APB 
Bridge, Aeroflex Gaisler GRLIB APBUART and AHB System Profiler. 

1.8 Reference Documents 
The documents listed below were used in the preparation of this document and 
contain additional information. In the event of conflict between the contents of this 
document and the contents of reference documents as listed below, this conflict 
shall be brought to the attention of the project management of the involved parties 
for clarification. 
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Reference Document Number Document Title, Author 

RD01 TEC-EDM/2008.27/BG Statement of Work to ITT- AO/1-6025/09/NL/JK, ESA 

RD02 IDA-PPS-0309-2 HW-SW Co-Simulation SystemC SoC Validation Platform – 
Technical Proposal 

RD03 IDA-PPS 0309-3 HW-SW Co-Simulation SystemC SoC Validation Platform – 
Management Proposal 

RD04 IDA-SCSPV-PL-001 HW-SW SystemC Co-Simulation SoC Validation Platform – 
Development Plan 

RD05 IDA-SCSPV-UM-001 HW-SW SystemC Co-Simulation SoC Validation Platform – 
IP User Manual 

RD06 IDA-SCSV-PD-001 HW-SW SystemC Co-Simulation SoC Validation Platform – 
SystemC IP Verification and Performance 
Document 

RD07 IDA-SCSV-DF-010 HW-SW SystemC Co-Simulation SoC Validation Platform – 
Design Flow Report 

RD08 IDA-SCSV-PMR-004 HW-SW SystemC Co-Simulation SoC Validation Platform – 
Power Modeling Report 

RD09 IDA-SCSV-IMS-001 HW-SW SystemC Co-Simulation SoC Validation Platform – 
Interconnect Methodology Summary 

RD10 IDA-SCSV-DSE-001 HW-SW SystemC Co-Simulation SoC Validation Platform – 
High-Level DSE Report 

RD11  HW-SW SystemC Co-Simulation SoC Validation Platform – 
Analysis Capability Report 
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2 THE USAGE OF SOCROCKET 
The SoCRocket TLM Library is a common TLM 2.0 Library, but designed to 
simulate in particular designs of the Aeroflex Gaisler GRLib. The modeled TLM IP 
cores are modeled and verified TLM counterparts to the core components from the 
Gaisler library. The parameters in the platform leon3mp are matching the 
parameters from the GRLib.  
Moreover the library is extendable with any needed IP Core as shown with the 
external LEON3 or SpaceWire IP, which are now deeply integrated in the library. 
Therefore this platform is an ideal starting point to design and shape new 
architectures for new systems. It helps to identify risks and flaws in early stages 
and allows early software development and simulation as close to the real-thing as 
possible. 
To do so the library has to be bootstrapped as shown in chapter 2.1 and either 
used for model development or platform exploration. Model development is shortly 
explained in chapter 2.2 and in detail in RD05. Platform exploration is introduced 
in chapter 2.3 and in detail explained in RD07 and further testing and refinement is 
explained in RD10. 
One of the most time consuming tasks was the verification of the hardware 
models. Besides the already time consuming task of verifying we had the 
misfortune that there were no test vector available for the project. This resulted in 
a long delay. Further information is given in chapter 3 and in detail in RD6. One 
special feature, which is woven into the models, is the power monitoring. It is 
introduced in chapter 4 and further information is provided in RD08. 
To show the full functionality of the library chapter 5 is explaining the methodology 
of a design space exploration with the SoCRocket design flow. 
Finally chapter 6 concludes with a description of the most important classes 
components and tools of the library.  

2.1 Bootstrapping the library 
The SoCRocket Library can be checked out from our GIT repository at the 
following location: 
https://socrocket:esac3e12@projects.c3e.cs.tu-bs.de/git/socrocket.git 
To compile and simulate the comprised models, software and example platforms 
the following tools are required (Fehler! Verweisquelle konnte nicht gefunden 
werden.): 

Tool / Lib Version Vendor Installation Path Variables 

Python 
(+PyQT4) >2.4 Python team On $PATH  

GCC (x86) >4.1.0 GCC team On $PATH  

GCC/BCC (Sparc) >4.3.4 GCC team On $PATH  
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Table 6 - Software Dependencies (* optional) 
 
Please make sure that all the software packages mentioned above are properly 
installed, before proceeding with building the library.  
Compiling software for the LEON ISS requires a SPARC compiler. We recommend 
using the GCC/BCC provided by Aeroflex Gaisler. It can be downloaded in 
different preconfigured packages depending on host system and software layout 
(e.g. bare-metal, rtems). 
http://www.gaisler.com/doc/libio/bcc.html 
The Mentor Modelsim simulator and the Aeroflex Gaisler GRLIB are required for 
SystemC/VHDL co-simulation. This feature can be optionally disabled (see 2.1.1). 
Gcov/Lcov and Doxygen are also optional components. The build system will not 
check for them. If the packages are not present, test coverage calculation and the 
generation of additional documentation are not possible. 
For the setup of the GreenSocs Software and the Carbon AMBA Sockets some 
additional instructions are given in RD05. Those are only intended to complement 
the documentation of the tools not to replace them. 
 

Binutils >2.19 GNU team On $PATH  

Doxygen* >=1.8.1 Doxygen On $PATH  

GCOV/LCOV* >4.1.0 GNU team On $PATH  

Boost >1_37_0 Boost team 
$BOOST_DIR  - header path 

$BOOST_LIB  - library path 

SystemC =2.2.x OSCI $SYSTEMC_HOME  – installation root 

libelf 0.152 Elf Team 
$ELF_HOME  – installation root 

 

TLM 2.0 2009-07-
15 OSCI $TLM2_HOME  – installation root 

GreenSocs 4.2.0 GreenSocs Ltd. $GREENSOCS_HOME  – inst. root 

AMBASockets 1.0 Carbon Design 
Systems Inc 

$AMBA_HOME  – installation root 

LUA >=5.1 Lua Comunity $LUA_HOME – installation 
root 

Modelsim* >6.0 Mentor Graphics On $PATH 

GRLIB* 1.0.21 Aeroflex Gaisler 

$GRLIB_HOME – installation root 

$GRLIB_TECH – 
Path to compiled demo design: 
/designs/leon3-gr-xc3s-1500/modelsim 
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The build system shipped with the SoCRocket library is written in waf . It requires 
at least Python 2.4 to run. The waf executable is located in the root directory of 
the library.  

2.1.1 Building the library 

Building the project requires the following steps: 
 
1. Execute ./waf configure   to configure the build environment 

The configuration step succeeds in case all the required software packages are 
available. Otherwise, it fails and shows the broken dependency. If so, the install 
path variable must be corrected. It is also possible to specify the location of a 
missing package. Use ./waf –h to see all the different options (e.g. --systemc, --
tlm). 
As mentioned before, SystemC/VHDL co-simulation can be optionally disabled, in 
order to be independent of commercial tools or, eventually, save compilation time 
(./waf configure –nomodelsim ). 
Another important switch controls the verbosity of the output that is directed to 
stdout  during simulation (--verbosity=1..6) . Verbosity level one only display 
error messages. Level two includes warnings that are issued during simulation. 
Level three prints execution statistics and analysis reports. The recommended 
setting (default) is Level four. It additionally shows configuration reports and 
information about the progress of tests. The highest verbosity is bound to level 5. It 
displays a message for each state-change of a transaction, which tremendously 
slows down simulation and is therefore only recommended for debugging. 
(Add the –G switch to the configure command in case you plan on running 
coverage calculation. This will have a penalty on the system performance.) 

 
2. Compile library and run unit tests 
 
Execute ./waf to compile all targets. Optionally, the –jN flag can be used to 
define to maximum number of parallel threads. If co-simulation is configured make 
sure you have enough licenses to execute N instances of Modelsim. 
As an alternative, you may select a specific target (test or library) for compilation.  
A list of targets can be generated with ./waf list . Selective compile is done 
using ./waf –targets=”comma,separated,list,of,targets” . 
After successful compilation the system automatically starts the respective unit 
test(s) and displays the result on the screen. 
Having the complete library up and running enables one to use the library to write 
new models as explained in 2.2 or making system simulations as shown in 2.3. 
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2.2 Writing new models 
The SoCRocket library can be easily extended by creating own components.  The 
existing simulation models provide examples for almost all possible combinations 
of bus interfaces: 
 

Model Bus interfaces 

leon iss CPU instruction master, CPU data master, Interrupt slave 

mmu_cache AHB master, CPU instruction slave, CPU data slave, Interrupt 
master, Snooping input 

ahbctrl AHB master (multi-socket), AHB slave (multi-socket), 
Snooping output 

apbctrl AHB slave, APB master 

ahbmem AHB slave 

mctrl AHB slave, APB slave 

socwire AHB master, Interrupt master 

gptimer APB slave, Interrupt master 

irqmp APB slave, Interrupt master (multi-socket), Interrupt slave 
(multi-socket) 

Table 7 - Overview models/interfaces 
To be integrated in the SoCRocket platform infrastructure, new models have to 
fulfill certain requirements. Most of them are encapsulated in a set of base 
classes.  
 
AHB Masters: All AHB master components must inherit from class AHBMaster . 
AHBMaster  is derived from class AHBDevice  and template class <BASE> . <BASE>  
can be sc_module , which is the default case, or any other child of sc_module . 
AHBDevice  provides the interface for identification of the device in the system. At 
start_of_simulation  the AHBCTRL  reads the configuration records of all 
connected AHBDevices  (Masters and Slaves) for building up its internal routing 
table (PNP records). The actual master socket, all related functionality, and state 
machines are encapsulated in class AHBMaster  iself. 
The socket is defined as follows: 
amba_master_socket<32> ahb  
The socket can be accessed via a set of interface functions (see 
./models/utils/ahbmaster.h ).  
Use the following function for reading from the master socket: 
void ahbread(uint32_t addr, unsigned char * data, uint32_t len); 

For writing data to the socket use: 
void ahbwrite(uint32_t addr, unsigned char * data, uint32_t len);  
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Other functions are available for using debug transport, activating bus locking, 
obtaining cacheability information, handing over additional delay, or retrieving a 
response pointer. 
The master can be configured for LT and AT abstraction via constructor parameter 
ambaLayer . At LT abstraction read-data can be obtained by evaluating the data 
pointer right after the interface returns control (blocking). At AT abstraction 
communication is non-blocking. This means, in a read operation the data pointer 
will usually not be valid right after return from the interface call. That’s why a 
callback function is provided for notifying the user about a valid response: 
virtual void response_callback(tlm::tlm_generic_payload * trans) 
{};  
The response_callback  function is plain virtual and must be implemented by the 
user. 
AHB Slaves: AHB slave components must inherit from class AHBSlave . AHBSlave  
is derived from class AHBDevice  and template class <BASE>.  <BASE>  can be 
sc_module , which is the default case, or any other child of sc_module . Modules 
implementing memory mapped registers should set <BASE>  to 
gs::reg::gr_device (Greenreg Device). 
AHBDevice  provides the interface for identification of the device in the system. At 
start_of_simulation  the AHBCTRL  reads the configuration records of all 
connected AHBDevices  (Masters and Slaves) for building up its internal routing 
table (PNP records). The actual slave socket, all related functionality, and state 
machines are encapsulated in class AHBSlave  itself. 
The socket is defined as follows: 
amba_slave_socket<32> ahb 

Communication with the user class is implemented using a callback function: 
virtual uint32_t exec_func(tlm::tlm_generic_payload &gp, sc_time 
&delay, bool debug = false) = 0; 

The slave can be configured for LT and AT abstraction via constructor parameter 
ambaLayer . At LT abstraction exec_func  is directly called from b_transport , 
and at AT abstraction directly after receiving BEGIN_REQ . The user model is 
expected to load the delay pointer with a response delay value!  
The response delay is the number of wait-states required for delivering the 
data multiplied with clock cycle time. 
 
APB Slaves: All APB slaves must inherit from class APBDevice . Similar to 
AHBDevice  the conveyed information is used to set up the routing table of the 
APBCtrl (PNP records). 
If the new device is supposed to have memory mapped registers, it must inherit 
from class gs::reg::gr_device . A small guide for modeling registers with 
GreenReg can be found in RD05. 
To enable the connection of the clock, the module should also inherit from class 
CLKDevice . 
class my_apbcomponent : public gs::reg::gr_device, public 
APBDevice, public CLKDevice 
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Note: Classes that inherit from gr_device  must not inherit from sc_module !! 
 
CPU Master/Slave: Building a component that acts as a CPU or is directly 
connected to the CPU does not require any base class. However, the transactions 
generated by the CPU are supposed to carry certain payload extensions.  
Instruction payload extensions: icio_payload_extension.h  
Data payload extensions: dcio_payload_extension.h  
Make sure to include the appropriate header/s in your design. 
 
Interrupt Master/Slave: All models that send or receive interrupts must use the 
following macro: 
SK_HAS_SIGNALS(class_name) 

For more information have a look at the SignalKit documentation in RD05.  
For more information on how to extend SoCRocket with additional models see 
RD05. 
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2.3 Simulating systems 
The SoCRocket SystemC modeling library provides models and tools for designing 
embedded systems for various applications. Primary use cases are design-space 
explorations at different levels of abstraction and development stages. Thanks to 
the built-in reconfiguration mechanism, hardware and software components can be 
parameterized without superfluous compilations and linking. 

 

 
Figure 5 - SoCRocket Design Flow 

 
The general design flow is depicted in Figure 5. The designer typically starts from 
a piece of reference software. In the domain of embedded computing the software 
is usually written in C/C++ language. 
In the first step of the flow, the reference software is segmented into two parts: one 
that will become the software running on one of the target processors, and one 
that will become the hardware. Finding the right partitioning for a system is a 
complex task and usually requires multiple iterations. 
In the next step, the structure of the system must be captured in an Exploration 
Prototype (EP). To establish the EP, the user needs to explicitly instantiate the 
hardware architecture (using C++ code) to be simulated. Instantiation and 
configuration of any model subject to exploration can be bound to configuration 
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parameters. These parameters are extracted from the design and stored in XML 
notation, along with default values, value ranges, and descriptions. The example in 
Figure 6 demonstrates this procedure. Here only one configuration parameter is 
specified (nProcessors ). It will be initialized from the underlying 
GreenSoCs/GreenControl API at runtime (line 3). The EP creates and binds 
processors and caches in a loop iterating from 0 to nProcessors  (lines 5-18). The 
library provides one predefined EP, the leon3mp , which will be used as an 
example throughout this document. More information about the structure and 
syntax of Exploration Prototypes is given in RD07 
All parameters of all components are specified as GreenSocs parameters 
(gs_params ) and, hence, can be easily modified at runtime. The time-consuming 
step of compiling and linking the platform needs to be carried out only once. The 
result is a configuration-independent simulator in form of an executable containing 
the GreenControl API.  
!

 
Figure 6 - Usage of reconfigurable parameters in Exploration Prototype (EP)!

In order to run the simulation, parameters extracted from the EP must be properly 
defined. Therefore, the VP provides a utility called the Configuration Wizard (CW). 
The CW parses the parameters extracted from the EP. In front-end mode, the user 
may define all settings in a graphical interface. The interface presents the 
parameters in a hierarchically organized way. Using front-end mode is helpful for 
first-time configuration. It is also possible to load and store configurations. For 
running larger explorations, it is more appropriate to vary the default settings in the 
XML parameter description and generated configurations by calling the wizard in 
terminal mode. The outputs of the CW are the SW runtime configuration and the 
HW runtime configuration. Next to defining parameters, the CW interprets the 
system’s memory map, generates linker scripts for software mapping, and creates 
a compilation script for automatic integration of the new system in the platform’s 
build environment. 
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Running platform simulation still requires mapping the software portions of the 
design. The predefined EP provides software stacks for bare-metal simulation (with 
newlib ) and RTEMS OS . To avoid recompilation after each change in the memory 
map, we follow a two-stage approach: first the application program is compiled into 
a configuration- and position-independent executable file using a SPARC 
Compiler. Afterwards, the mkprom  tool from Aeroflex Gaisler fills in all 
configuration-specific options, adds the boot code, and compresses the resulting 
application executable file into a ROM image or a separate platform depended 
prom image can be used to startup the platform. At simulation begin, the boot code 
initializes the registered components, decompresses the application file, and 
copies all data to the final memory locations. This flow is equivalent to the way 
hardware simulations are initialized in GRLIB, only that the VP can directly load 
binaries files.  
During simulation, the platform infrastructure gathers execution statistics. For this purpose 
every simulation model provides a set of performance counters. In the default 
configuration, the performance counters are written to the terminal after the end of the 
simulation. It is also possible to trace counters in log or waveform files, and to register 
handles for certain bounds and events. The analysis of the simulation results is the 
foundation for the verification of the design goals. The designer usually aims for 
requirements such as throughput and latency at the lowest possible cost. If the design 
goals are not met, configuration or partitioning must be optimized. This document only 
provides an example for using the analysis features of the platform. All available options 
are described in the Analysis Capability Report (RD11). 
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3 VERIFICATION OF IP MODELS 
In Task 3, we evaluated the timing accuracy and simulation speed of each 
SystemC IP model and compared against the RTL implementation.  
The IP models required for the proof-of-concept VP, were built in Task 6, and their 
current state of availability is summarized in Table 8. 
 

IP Model Reference 
Name 

Availability 
VHDL 
Description 

SystemC 
Model 

Test 
Vectors 

AMBA Bus Available DEV  DEV 
AMBA Bus Bridges Available DEV DEV 
SparcV8 MMU Available DEV DEV 
Cache + CCP Available DEV DEV 
IRQMP Available DEV DEV 
GPTMR Available DEV DEV 

MCTRL Available DEV DEV 
Embedded Memory DNA DEV DEV 
SpaceWire Available NI DEV 
SocWire Available DEV  DEV 
CAN Bus Interface DNA DNA  DNA 

Table 8 – Availability of IP Modules including Options 
 DNA: "does not apply" 
 DEV: "developed in the SoCRocket project" 
 NI: “Needs integration into SoCRocket project” 
The official test vectors of the GRLIB are only contained in the commercial version 
of the library, which is not available to us. In the context of setting up the tests, it 
was tried to extract as many test vectors from the platform test benches of the 
open source GRLIB as possible. Additionally, sets of new test vectors had to be 
defined. 
In addition to the IP models listed above, a LEON3 ISS generation tool has been 
provided by ESA. Generation of and trials on a LEON3 ISS have already led to a 
successful simulation of a subset of MiBench applications (Table 5). 
Mentor Modelsim will be used as the main tool for verification. It provides 
capabilities for RTL / SystemC co-simulation and automatic test coverage 
calculation. Figure 7 illustrates the intended test bench setup. 
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Figure 7 - TLM module test setup 

 
The test vectors are wrapped inside a TLM 2.0 master module, which contains one 
process for sending stimuli to the module under test (MUT) and one process for 
monitoring and comparing simulation results. The TLM MUT can be directly 
connected to the sockets of the testbed.  
To obtain reference data from the RTL IP the same setup can be reused by 
inserting TLM/RTL adapters. An appropriate module was developed within this 
work packageWP1300.  
In case the timing accuracy does not met the requirements the models had to be 
modified or updated. During development, we kept simulation speed in mind. Fast 
simulation is crucial for the success of the process, although no particular 
requirement had been set.  
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4 POWER MODELING 
The most prominent use cases of virtual platforms are software development, 
architecture exploration and system verification. Depending on the field of 
application the users are interested in high simulation speed, utilization and 
performance figures, or high accuracy. Nowadays, these use cases get more and 
more accompanied by the wish to estimate power consumption as early as 
possible and as high up as possible in the design flow. Especially modern 
embedded multi-processors have to consider power constraints. Particularly 
mobile, nomadic systems need to operate on given power budgets and are 
restricted to a maximum peak current. Hence, software for such systems should be 
written with power demands in mind. 
To enable trading off power consumption against performance and latency, the 
SoCRocket library provides an event based power-monitoring concept. 

4.1 Power estimation concept 
All core models of the SoCRocket library provide a constructor parameter 
pow_mon . If pow_mon  is enabled the power consumption of the respective module 
will be estimated during simulation runtime.  
Three different classes of power dissipation are supported: static power, dynamic 
internal power and dynamic switching power. Each of them is estimated and 
reported separately. 
The static power represents the ‘leakage’ of the component. It is more or less 
independent of the application running on the processor. For high-level 
approximations static power can be considered independent of the clock 
frequency. Static power linearly scales with silicon area and is strongly technology 
dependent. Therefore, SoCRocket simulation models contain at least one input 
parameter, which is supposed to be initialized with normalized leakage power 
information. The way of obtaining normalized leakage power is different for most 
components. For memories (e.g. SRAM, ROM) it is specified in pW/bit. The default 
settings included in the models are derived from a generic 90nm CMOS technology 
kit. The same accounts for the built-in dynamic power information. 
The dynamic power of a component is composed of an internal power portion and 
a switching power portion. In general, dynamic power is linearly dependent on the 
clock frequency. The internal power can be considered independent of the 
application running on the processor. It is caused by different effects such as 
registers (D-Flops) rewriting themself, toggling input pins or memory refresh 
cycles. Similar to static power the models contain dedicated input parameters for 
normalized dynamic power. The actual internal power is then being calculated with 
respect to the configuration at hand. Information about the normalized internal 
power of all simulation models can also be found in RD08. Normalization of 
internal power is always based on clock frequency or on clock frequency and a 
factor proportional to area (e.g. bits in memory). 
The application dependent part of the dynamic power is the so-called switching 
power. Switching power is dissipated if busses, pins or storage elements change 
value. Since power represents the average consumption of energy over time it is 



 

 

 
TU Braunschweig 

 

HW-SW SystemC Co-Simulation 
SoC Validation Platform  

Final Report and Executive 
Summary 

Reference: IDA-SCSV-FR-001  
Issue:   V 0.1  
Date:   11/10/12 
Page:   27 

not an appropriate unit for event-based discrete measurement. Therefore, we rely 
on fixed normalized energy per access or energy per execution figures. The 
average switching power of a simulation can be obtained by counting the number 
of accesses, multiplying with a value representing the energy per access and 
dividing with the simulation time. Most library components, such as memories and 
busses, assign energy quotas to read/write operations, while e.g. the processor 
uses a fixed energy per instruction budget.  

4.2 Acquiring power values 
To estimate the power consumption of the various models, all relevant GRLIB 
components have been synthetized using a generic design kit for 90nm CMOS 
technology. The design kit can be obtained from following location: 
http://www.synopsys.com/Community/UniversityProgram/Pages/Library.aspx 
It contains 90nm standard cells, memory models, a phase-locked loop, IO pads 
and various special components such as level shifters. Power estimation was done 
using Cadence RTL Compiler Version 10.10.100.  
The base for the normalized default power values given in RD08 is the LEON3MP 
reference design, which is also a part of the design kit. 
The default input power values have been obtained as follows: 

• Design synthesized to Gate-Level 
o The compile.rc script in the design library may be used to compile the 

sources. 
o Other scripts are available for setting up the technology libs  

(e.g. common_setup.tcl) 
o For information on how to elaborate and synthesize see the  

Cadence RTL Compiler User Manual 
o Components of the design annotated with statistical switching activity 

(default). 
 

• Power Report generated with command: report power 
• Normalized static power calculated by dividing static power with divisor linear to 

area: 
 

o e.g. normalized static power for AHBMEM  
(component ahbram0 / single-port SRAM):  
 

!!"#"$%&'() = !!!"#"$%!!"#$
!= !10400000!!"8192!!"# != !1269,53!

!
(with !!"#$ - size of memory in bits) 
 

• Normalized internal power calculated by dividing internal power with divisor 
linear to area and clock frequency: 
 

o e.g. normalized internal power for GPTimer (logic): 
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!!"#"$%& = ! !!"#
!!"#$%& ∗ !!!"#

!= ! 2,186!!"
2! ∗ !!100 ∗ 10!!!" != !1,093! − 08 

(with !!"#$% !− !!"#$%&!!"!!"#"$$%$!!"#$%&) 
 
 

• Normalized switching energy is calculated by dividing energy per access with 
an area dependent divisor. The normalized energy per access is approximated 
by dividing the average switching power with the toggle rate and the clock 
frequency: 
 

o e.g. normalized access energy for component ahbram0  
(single-port sram): 
 
!!""#$$ = ! !!"#$%!

!!"#$∗!!!"
!= ! !,!"#!!"

!,!!∗!!""!∗!!"!!!" != !1,98! − 7 
 
!!""#$$%&'( = !!""#$$

!"#$!!"#$∗!!"#$
= !,!"!!!!!"

!"!∗!!"#$ = !7,57! − 13 
 
 
!!"#$    - toggle rate 
!"#$ℎ!"#$  - width of memory 
!!"#$   - size of memory in bits 
 
 

4.3 Power reporting 
 
The power modeling concept implemented in the SoCRocket library allows to 
monitor and report power consumption at different levels of accuracy. Given the 
presented interfaces it is easy to implement custom power reporting tools. An 
example implementation is given in: 
./common/powermonitor.{h,cpp} 

This monitor is also integrated in the leon3mp  platform. It can be configured to 
report the average power consumption of all modules in the system at a given 
instance in time (constructor parameter report_time ). If report_time  is 
SC_ZERO_TIME the report will be generated at the end of the simulation 
(end_of_simulation  callback). To activate power reporting enable the 
p_report_power switch. 
The core functionality of the module is implemented in function gen_report . It 
operates in the following way: 

1.  Obtain pointer to GreenControl API:  
gs::cnf::cnf_api *mApi = 
gs::cnf::Gcnf_Api::get_ApiInstance(NULL) 

2.  Collect all registered parameters related to power consumption in 
std::vector power_list 

3. From power_list  select all power output parameters belonging to the same 
instance 
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4.  Print report for static, internal and switching power of the instance (if exists): 
e.g. mApi->getValue(std::string(get_model_name(models_list[0] 
+ “.power.sta_power”), model_sta_power) 

5. Accumulate power values for global statistics and remove instance from 
power_list 

6. Continue with next model from power_list  (3) 
7. If power_list  empty print global statistics 

 
Most of the models listed in RD05 report switching power. All of them contain a set 
of activity counters, e.g. for counting the number of reads or writes to a memory. 
These counters are implemented as externally visible configuration parameters, 
which means they can be modified/reset during simulation. Moreover, all models 
reporting switching power provide the parameter power_frame_starting_time . 
The latter can also be altered at runtime. 
At default power_frame_starting_time  is initialized with SC_ZERO_TIME , which 
is the starting time of the simulation. The power reported by a model’s switching 
power output parameter always relates to the average switching power consumed 
in the time interval since power_frame_starting_time . Calculation of the 
average switching power is done inside the models using pre-read callback 
functions (swi_power_cb ). This means, at every read access to a switching power 
output parameter, switching power is calculated from normalized per-access 
energy, number of accesses and ∆!: 

!!"#$%! = (!!"#$%%"&&'(#) ∗ !!""#$$#$)/(!!"# − !!"#$") 
(!!"#$"- power_frame_starting_time) 
Given this mechanism power profiles over time for whole applications can be 
generated at different granularity, by e.g. (Figure 8): 

• Continuously reading power outputs at regular intervals (as shown in RD08) 
• After each read set power_frame_starting_time  of observed modules to 

current simulation time 
• After each read reset the activity counters 
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Figure 8 - Example for custom power reporting 

 
Remark: More information about handling GreenControl parameters can be found 
in the SoCRocket Library User Manual (RD05). 
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5 DESIGN SPACE EXPLORATION 
As an application for design space exploration we have selected lossless multi-
spectral and hyper-spectral image compression as standardized by the 
Consultative Committee for Space Data Systems (CCSDS) in Standard #123. The 
algorithm is an example of the applications executed on the payload processors 
aboard most scientific satellites; as such systems are often resource constrained, 
the use of SoCRocket enables achieving an optimal configuration of the system 
with high performance while limiting the overall system’s cost in terms of silicon-
area occupation and power consumption.  
As said above, the algorithm operates on hyperspectral images; these are three-
dimensional data sets, where two of the dimensions are spatial and the third is 
spectral. A hyperspectral image can be regarded as a stack of individual images of 
the same spatial scene, with each such image representing the scene viewed in a 
narrow portion of the electromagnetic spectrum. Overall, the algorithm is based on 
adaptive linear predictive compression using the sign algorithm for filter 
adaptation, with local mean estimation and subtraction. The prediction residual is 
then encoded using a sample-adaptive Golomb-Rice encoder.  
The implementation of the algorithm in C language has been provided by ESA. The 
code could not be used out-of-the-box, because it was not prepared for multi-
threaded execution. The code itself is in large parts dominated by data movements 
and bit-level optimizations. Naturally, it would be much better suited for a 
dedicated hardware implementation. This needs to be kept in mind, especially 
when looking at the simulation results.  
Nevertheless, the application makes an excellent demonstration case for design 
space exploration. It was decided to execute the code on top of RTEMS OS. The 
steps required for transforming the code into a flexible multi-processor 
implementation are explained in the following subsections. 
The base platform for the design space exploration described in this document is 
the leon3mp system, which can be found in the repository at following location: 
./platforms/leon3mp 

Figure 9 shows the simplified structure of the system. The leon3mp  VP consists of 
N  processors, which are connected to an AMBA High-Performance Bus (AHB). 
Each of the processors has it’s own private instruction cache and data cache. The 
processors can also be configured to enclose memory management units as well 
as data localrams  and instruction localrams . 
The shared AHB bus  connects the CPUs to a memory controller. The memory 
controller can be configured for four different types of memory: IO , PROM , SRAM  and 
SDRAM . The default configuration provides PROM  + SDRAM .  
The APB-bridge  connects the configuration registers of the MCTRL , the multi-
processor interrupt controller and the general purpose timer. Other components of 
the system are the AHBMEM , which is a simple SRAM  device, the APBUART  IP*, the 
SoCWire * bridge and the SpaceWire* bridge. 
* not in picture 
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Figure 9 - Base platform for design space exploration 

Finding the optimal configuration of a design means defining the best set of 
configuration parameters in terms of performance, power consumption and area 
occupation. The number of parameter-sets under exploration depends on the 
system requirements/constraints and the selected exploration starting point. The 
SoCRocket platform provides all matters for generating parameter sets and 
executing simulations in a semi-automatic way. The implemented tools 
theoretically enable an exhaustive search of the design space covering all 
configuration parameters. Although for realistic applications with considerable 
runtime this is hardly practical.  
The recommended approach is to start with an educated guess for a sane initial 
configuration. Usually, the results from the first simulation runs radically narrow the 
solution space. Compared to exhaustive search, directed and controlled 
exploration leads to equally good results, but only requires a fraction of the time. 
The detailed description of the execution of the DSE is written down in RD10. 
The results of the DSE are plotted in Figure 10. It compares all the tested 
configurations in terms of simulation performance and power consumption. 
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Figure 10 - Summary: power vs. performance 

 
 

(1) Configuration with highest performance: 
 
6x CPU, 4 data-cache sets, 8kB data-cache set size, 3 instruction-cache sets, 4kB 
instruction cache set size 
 
(2) Configuration with lowest power consumption: 
 
2x CPU, 2 data-cache sets, 1kB data-cache set size, 1 instruction-cache set, 1kB 
instruction cache set size 
 
(3) Configuration with highest power consumption: 
 
6x CPU, 4 data-cache sets, 8kB data-cache set size, 3 instruction-cache sets, 4kB 
instruction cache set size 
 
(4) Configuration with lowest performance: 
 
2x CPU, 2 data-cache sets, 1kB data-cache set size, 1 instruction-cache set, 1kB 
instruction cache set size 
 
(5) Configuration with best power vs. performance trade-off: 
 
2x CPU, 4 data-cache sets, 1kB data-cache set size, 3 instruction-cache sets, 4 kB 
instruction cache set size 
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6 LIBRARY IMPLEMENTATION ASPECTS 
The simulation models of the library are developed in SystemC language and built on the 
OSCI TLM2.0 standard. Like any TL model they abstract from cycle-timed accuracy by 
modeling communication in form of function calls. Depending on the use case this can be 
done in many different ways. The general aim is to save simulation time by sacrificing a 
certain amount of timing accuracy. Moreover, TL simulations usually give the user a bigger 
amount of leeway, compared to RTL.  
Two major use cases are covered: software development and architecture exploration. 
Consequently, all IPs of the library support loosely timed (LT) and approximately timed 
(AT) abstraction. The abstraction layer is selected using constructor parameters. 

6.1 Library Foundation 
In chapter 2.1 the bootstrapping of the library is explained. How to write models and use 
the generated platforms is explained as well. In addition we will explain here a little bit 
more in detail the most important classes and tools of the library. 

6.2 Base Models 
In this section we will describe the base models ... listed will be the class, location and ... 
followed by a short description of its function.... oder so ähnlich 
 
Clock Device: 
 
class CLKDevice    
models/utils/clkdevice.*  
lib utils 
 
The class CLKDevice  is used to consistently distribute clock/timing and reset 
amongst all IPs of the library. Devices that inherit from CLKDevice  receive two 
SignalKit inputs: clk  and rst . If the child requires reset behavior, it may 
implement the virtual function dorst() , which is triggered by the rst  input. 
Moreover, CLKDevice  provides a data member „clock_cycle“ , which can be 
used by the child to determine the clock period for delay calculations. The value of 
clock_cycle  is set by connecting a sc_time  SignalKit signal to the clk  input or 
by calling one of the various set_clk  functions of the class. 
 
AHB Device: 
 
class AHBDevice 
models/utils/ahbdevice.* 
lib utils 
 
All simulation models that are supposed to be connected to the TLM AHBCTRL 
must be derived from the class AHBDevice. Usually, this is indirectly done by 
inheriting from the AHB Master or AHB Slave classes (see below). The Aeroflex 
Gaisler AHBCTRL implements a Plug & Play mechanism, which relies on 
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configuration information that is collected from the attached masters and slaves. 
AHBDevice models the respective configuration data records. The structure of 
these records is described in RD04. At start_of_simulation the TLM AHBCTRL 
iterates through all connected modules to retrieve AHB bar & mask and build up its 
internal routing table. 
 
AHB Master: 
class AHBMaster 
models/utils/ahbmaster.* 
lib utils 
 
Almost all models implementing an AHB master interface (except busses) are derived from 
class AHBMaster. AHBMaster is a convenience class providing an AHB master socket and 
implementations of various access functions for reading/writing data over the bus. 
AHBMaster inherits AHBDevice and can be configured for loosely timed (LT) or 
approximately timed (AT) level of abstraction. 
 
An overview about how to build own components based on AHBMaster is given in chapter 
2.2. 
AHB Slave: 
class AHBSlave 
models/utils/ahbslave.* 
 
Almost all models implementing an AHB slave interface (except busses) are derived from 
class AHBSlave. AHBSlave is a convenience class providing an AHB slave socket and 
callback functions for hooking up with the behaviour of user models. AHBSlave inherits 
AHBDevice and can be configured for loosely timed (LT) or approximately timed (AT) level 
of abstraction. 
 
An overview about how to build own components based on AHBSlave is given in chapter 
2.2. 
 
APB Device: 
class APBDevice 
models/utils/apbdevice.* 
lib utils 
 
All simulation models that are supposed to be connected to the TLM APBCTRL 
must be derived from class APBDevice. Similar to the concept of AHBDevice, the 
child inherits Plug & Play configuration records representing its device type and 
address. At start_of_simulation the APBCTRL iterates through the connected 
slaves collecting all APB bar and mask settings for building up its routing table. 
Modules, like the MCTRL, which posses an AHB as well as an APB interface must 
be derived from AHBDevice and APBDevice. 
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Memory Device: 
class MEMDevice 
models/utils/memdevice.* 
lib utils 
 
The class MEMDevice is the base class of all memories to be connected to the 
MCTRL. The library provides a Generic Memory, which implements the given 
interface. The included functions are required to determine the features of the 
attached component for correct access and delay calculation. 
 

6.3 Designed IP Models 
One oft the goals were to develop several TLM IP models. Table 9 is a list of all needed IP 
models. In addition supplementary IP models where designed to make the platform 
simulation more accurate and usable (Table 10). 
 

No. IP 

1 AMBA AHB 

2 Aeroflex Gaisler GRLIB MCTRL Memory Controller or equivalent 

3 A memory model working with IP 2 

4 A Harvard L1 cache (including support of cache coherence protocols, 
snooping and write invalidate) 

5 A SPARCv8 MMU or equivalent 

6 Aeroflex Gaisler GPTIMER General Purpose Timer Unit or equivalent 

7 Aeroflex Gaisler IRQMP Interrupt Controller or equivalent 

Table 9 - List of IP models from development plan 
 

No. IP 

8 AMBA AHB to APB Bridge 

9 Aeroflex Gaisler GRLIB APBUART 

10 AHB System Profiler 

Table 10 - Supplementary IP models 

6.4 DSE Tools & Build System 
This chapter gives an overview over the additional tools provided by the library. The tools 
are mostly used to change and modify platform parameters. Starting with an introduction in 
platform parameters it will be explained how to use the DSE system tools and then the 
generator wizard and direct scriptable tools to modify the configuration JSON files. 
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6.4.1.1 Defining Parameters 
As described in the SoCRocket Design Flow document (RD07) system configurations are 
represented by json  files. Each of these files contains a hierarchical description of all 
configuration parameters and their initial values. The example below shows a parameter 
definition for the ahbctrl IP , as used in the leon3mp  platform: 
 
"conf": { 
    "ahbctrl": { 
      "cfgaddr": 4080, 
      "cfgmask": 4080, 
      "defmast": 0, 
      "fixbrst": false, 
      "fpnpen": true, 
      "ioaddr": 4095, 
      "ioen": true, 
      "iomask": 4095, 
      "mcheck": true, 
      "rrobin": false, 
      "split": false 
    } 

 
The hierarchical name of e.g. the rrobin  parameter is conf.ahbctrl.rrobin . 
The leon3mp  platform comes with a LUA script (config.lua ), which parses the 
configuration at the beginning of the simulation and initializes all configuration 
parameters.  
 
To ease the handling of JSON configuration files two scripts are provided in the 
tools directory, which may be used to set/get names of attributes or values. Usage 
is as follows: 
 

1. For obtaining the value of a certain parameter: 
./tools/get_json_attr leon3mp.json conf.ahbctrl.rrobin  
 

2. For getting a list of all parameter/value pair for a certain IP (here ahbctrl): 
./tools/get_json_attr leon3mp.json conf.ahbctrl 

 
3. For setting a parameter to a new value: 

./tools/set_json_attr leon3mp.json conf.ahbctrl.rrobin=true  
 
It is also possible to set multiple parameters at once. The new configuration file will 
be written to stdout . 

 
A JSON configuration file can be written manually or generated using the 
SoCRocket Configuration Wizard. Additionally, a script is provided for generating 
groups of configurations from Comma-Separated-Values Files (CSV). Such files 
can be written with e.g. Microsoft Excel. The example in Figure 11 contains four 
configurations – one per line. The name of the configuration must be given in 
column A. All other columns represent parameters. The name of the parameter is 
expected in the first row (header of table). It must be equivalent to the name of the 
parameter in the platform (e.g. conf.mctrl.prom.elf  for application binary). 
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Figure 11 - Spreadsheet for generating json configurations 

To generate json configuration files for each of the configurations in the spreadsheet use 
the following command: 
 
./tools/csv2json leon3mp.json configurations.csv 

 
The default configuration file of the leon3mp  platform (leon3mp.json ) is used as 
a template. All parameters that are found in the CSV file will be assigned to new 
values. 
6.4.1.2 Running Simulation 
All configurations that shall be explored in one step should be located in the 
benchmark SW directory. For the example of the hyperspectral compressor this 
path is: 
./software/rtems/ccsds123-mp-v2 

The directory contains a Makefile for controlling the exploration. The Makefile 
compiles the application code, applies target specific settings and starts the 
simulation(s). 
Software can be compiled with following command: 
make targets 

Boot-code will be generated and linked automatically. The application is not 
completely platform independent. Especially, the number of CPUs needs to be 
known at linking time (parameter expected by mkprom ). Therefore, this step will 
generate multiple binaries for systems with one, two, four and six CPUs. 
If the software is compiled and the JSON configuration file(s) are available, the 
simulation can be started. This can be done in multiple possible ways. 
 

6.4.2 Configuration Wizard 

The SoCRocket configuration wizard can be used to generate and reconfigure 
system simulations.  
The tool can be started with following command: 
./waf generate 

The wizard offers a dialog, which allows the user to select a template and a 
configuration, or create a new configuration for an existing template. All 
parameters of the template will be displayed in an input mask.  
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Figure 12 - Configuration Wizard 

 
The configurations created by the wizard can be copied and then modified with a 
simple text editor, due to the fact that they are pure JSON files. The tools 
get_json_attr  and set_json_attr  can help to modify them for example in 
automated design space explorations. 
 
Change Attributes: 
 
./tools/set_json_attr templates/leon3mp.singlecore.json 
conf.system.ncpu=2 > templates/leon3.dualcore.json  
 
To navigate through a file use get_json_attr : 
./tools/get_json_attr templates/leon3mp.json conf 

(Will show all attributes in conf) 
More detailed information about the SoCRocket configuration wizard can be found 
in RD10. 
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7 STUDY RECOMMENDATIONS 
First of al we recommend to extend the platform with more components. To keep 
the platform useful and in use it is crucial to extend the library and add more 
components. This will cover more cases so that many teams in different fields of 
work can benefit from using TL Models in DSEs. Only a rich and well-developed 
base library can provide these services and the results of this project, as the 
SoCRocket library, can just be the foundation for such a library. 
While the platform was in development some changes where made to the state of 
the art tools in TLM Design. The SystemC 2.3 library is published and fixes a lot of 
problems of the 2.2 version. It would be more than suitable to switch over to the 
new library.  
Moreover substituting the AMBASockets with OCPSockets should be considered. 
During the development phase of the SoCRocket library, the OCP partnership was 
collecting TLM components and base libraries. GreenSocs and the AmbaKit is now 
deeply integrated in the OCP libraries and OCP sockets are the successor to the 
AMBASockets. So it should be take very little effort and is strongly recommended 
to substitute the AMBASockets with the OCPSockets.  
Furthermore it is important that the library is debugged by further use. As any 
software this software will not be without flaws and only the use in different kinds 
of application from different people can solve that.  
 

8 CONCLUSIONS 
After all, the project has proven successful. Every objective has been acquired and 
every goal has been reached.  
All 7 SystemC High-Level Models are working. The AMBA AHB Controller, Aeroflex 
Gaisler GRLIB MCTRL Memory Controller, A memory model, A Harvard L1 cache, 
A SPARCv8 MMU, Aeroflex Gaisler GPTIMER General Purpose Timer Unit and 
Aeroflex Gaisler IRQMP Interrupt Controller are tested and verified in single test 
benches and proven to work together in other test benches or the LEON3MP VP 
platform with various software tests. More over to design a fully functional and 
timing accurate platform it was required to extend the library by one more optional 
model, the AMBA AHB to APB Bridge, which is as well tested and verified in 
standalone tests and combinational tests as well as in the DSE setup. See RD05 
for more information. 
To measure the platform power consumption power vectors are integrated in each 
of these 8 models. And a basic set of power data is extracted from the TSMC 
90nm process to annotate and verify these power vectors. The output can be used 
to measure the power consumption while doing a DSE. See RD08 for more 
information. 
To perform such DSEs we’ve provided a proof-of-concept VP model, designed with 
the leon3mp platform in mind. Its defaults are modeled as close as possible to the 
leon3-xilinx-ml509 design from the GRlib, which we used to cross verify DSE 
behavior.  
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Moreover we’ve developed multiple tools and a design flow to support creation and 
usage of such VPs with the SoCRocket library. The tools are usable for cli 
automation, but not limited to and even include a graphical wizard to change 
configurations of the defined platform. The design flow, which defines how to 
create and use such platforms, is discussed in detail in RD07. Information on how 
to use the tools can be found in RD10. 
To test the VP we’ve used various bare metal tests, which are included in the 
SoCRcoket library and build with the entire library. Plus we’ve executed various 
operating systems on top of is like FreeRTOS and RTEMS. Two RTEMS targets 
are included in the library. See RD10 to utilize them. 
In RD10 RTEMS is used in our DSE Demonstration to facilitate the DSE with 
operating systems in the VPs we have added another model to the library which is 
a TL Model of the Aeroflex Gaisler GRLIB APBUART. Moreover to meter points of 
interest in a DSE and to end a DSE in a way that the simulation results are shown 
we have developed an AHB System Profiler, which is directly interacting with the 
SystemC simulation environment from within the SPARC software. 
The project took longer time then planned which was caused by a number of 
unforeseen circumstances. First the AMBA-Kit library was promised to be GPL, 
which did not materialize. Hence parts of the library had to be re-designed by 
ourselves. This larger effort was not originally planned for. The second problem 
that caused delays was the unavailability of test vectors for WP1300. As a 
consequence we had to verify IP blocks without test-vectores, some of them even 
without full specification.  
To conclude this results the DSE Report has shown the use of TLM platforms can 
drastically reduce the time of optimizing the platform architecture to optimally meet 
the demands of a specific application. So the development of such a platform was 
long overdue and this project has the potential to be the first stone in a big 
component library drastically reducing the simulation time. 
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