

1/28 4000109680/13/NL/HK

Proposal of PMCs for tracking worst-case

behaviour in multicores: the case of the NGMP

Document Information

Author Francisco J. Cazorla, Mikel Fenandez, Javier Jalle

Contributors Luca Fossati

Reviewer Jaume Abella

Keywords Performance Monitoring Counters, worst case execution time

2/28 4000109680/13/NL/HK

Table of Contents
 Introduction ... 3 1

 Reference architecture ... 4 2

2.1 Reference NGMP architecture ... 4

 Inter-Task Interference CPI stack .. 5 3

3.1 itiCPIstack in the NGMP ... 6

 Accounting the interference on the NGMP .. 8 4

4.1 Processor cores .. 8
4.2 AMBA bus ... 9
4.3 Memory ... 10
4.4 Shared last level cache .. 10

4.4.1 Non-partitioned cache: Auxiliary Tag Directory (ATD) and per-cache-line owner
bits 11
4.4.2 Non-partitioned cache: Auxiliary Tag Directory (ATD) 12
4.4.3 Non-partitioned cache: Per-cache-line owner bits ... 12
4.4.4 Non-partitioned cache: minimum support .. 13

 Results ... 14 5

5.1 Experimental setup ... 14
5.2 Benchmark characterization ... 15
5.3 Results .. 16

5.3.1 High bus usage: EEMBC cacheb .. 16
5.3.2 Low bus usage: EEMBC bitmnp .. 17
5.3.3 Sensitive to L2 and MC interference: ESA AOCS and EEMBC cacheb 18
5.3.4 Sensitive to bus interference: EEMBC matrix and basefp 19
5.3.5 Highest impact on execution time: EEMBC basefp ... 21
5.3.6 Other benchmarks ... 21

References ... 28

3/28 4000109680/13/NL/HK

 Introduction 1
The main goal of this document is to define a PMC infrastructure for a NGMP-like
processor that will help providing insight information about the effect of inter-task
interference among corunning tasks (a.k.a. corunners). This document takes as
baseline D1(1) who covered an analysis of the PMCs of the latest multicore
architectures of some of the major chip providers in the market.

4/28 4000109680/13/NL/HK

 Reference architecture 2
The reference processor architecture we are going to use is the NGMP.

We note that the NGMP has a nominal implementation (the actual) and several
proposal for implementation. We have identified in each not-fully decided design the
particular NGMP implementation we consider.

2.1 Reference NGMP architecture

Our reference NGMP architecture is not the actual NGMP architecture since it is
going to be upgraded with new features. The actual implementation does not
implement SPLIT transactions support on the processor bus. Without it, all inter-task
interferences occur on the processor bus, since it is acting as a lock for the whole
system, allowing only one request to be accessing the shared memory hierarchy.

The future NGMP will have SPLIT transactions support on the processor bus, which
allows up to one request per-core to be issued to the shared memory hierarchy, i.e. the
L2 cache. The bus will only split on load misses, since for hits and stores the L2 is
able to respond with a reasonable amount of wait states. For store misses, the L2 still
responds immediately since it can handle the request by its own.

To be able to handle one request per-core on the L2 it is required a LockupFree cache
(Gaisler calls it multiport, since their idea is to implement a 4-layer bus in the future
with one port per core in the cache), that will allow the L2 to manage hit-under-miss
and miss-under-miss, which means that when a miss is processed other requests to the
L2 can be served: hits and misses. Another feature of the L2 cache is the variable
latency depending on the type of request of the actual request and the previous one.
Since the information about the time-window in which the previous request can affect
the actual one it is not clearly stated by Gaisler, we will assume only that there is a
different latency depending on the type of request, i.e, load or store.

The L2 sends the miss to the memory controller one at a time, and in case there are
more than one outstanding miss, it is saved on a FIFO queue. The memory controller
is not intended to serve request in parallel and will only serve one request at a time, in
a close-page manner. If we consider the FIFO queue of the L2 as part of the memory
controller, it behaves as a FIFO close-page memory controller that behaves almost
like the round-robin processor bus that serializes the requests to the L2.

The last interesting architectural feature that affects the timing is the write-buffer
present in each core. This buffer will hold store requests until they are resolved
without stalling the processor. The processor will only be stalled if a store finds the
write-buffer full or a load operation finds the write-buffer non-empty (to keep
memory consistency). The write-buffer has a big effect on the interference accounting,
since not all the interference that will happen on the different architectural
components (bus, cache, memory,…) will be relevant, for instance, if core 0 is being
interfered on the access to the processor bus, but it is a store inside the store-buffer,
core 0 is not stalled, thus being immune to that interference.

5/28 4000109680/13/NL/HK

 Inter-Task Interference CPI stack 3
Our proposal moves around the concept of CPIstask. The CPI stack relates
architectural components with performance counters to show which CPU component
is generating stalls and hence the program to consume cycles in its execution.

A CPIstack for given core ݅, in the classic view, breaks up the total execution cycles,
 , or lost due to cache misses, pipelineݏ ,, and cycles stalledݑ ,, into useful cyclesݐ
stalls, brach-missprediction, etc… . In an ideal processor (IPC=1), all cycles are
useful cycles, i.e. ݏ ൌ 0.

ݐ ൌ ݑ ݏ

Our goal is identifying contention and conflicts in the access to hardware shared
resources in a multicore architecture. We call those conflicts inter-task interferences.
With this idea in mind, we build an inter-task interference CPI stack(itiCPIstack). Our
goal with the itiCPIstack is to classify the stalled cycles that the processor consumes
into the cycles doing local activities (e.g. handling a long latency FPU instruction,
pipeline stalls, etc…), which we name local stall, ݈; and the cycles consumed in the
external hardware shared resources, or external stall, ݁.

ݏ ൌ ݈ ݁

In the former category, local-stall cycles, we do not further subdivide stall cycles
since in our case we are interesting on breaking down the effect of inter-task
interferences, which only affects the external stall cycles. In a classic CPI stack local-
stall cycles can be classified as FPU stalls, branch-missprediction, ….

In the latter category, external-stall cycles, we will classify the cycles consumed on
each hardware shared resource. For each resource ݊ of all ோܰ resources, we create a
subcategory called inter-task interferences, ݅݊ݐ

, which covers that cycles in which
the processor i was stalled due to some inter-task interference activity generated by
another core j and a subcategory called intrinsic latency or useful cycles, ݑ

, which
covers the cycles spent actually using the resource, as it will be when running in
isolation, i.e., without contention and conflicts.

݁ ൌ ݑ
 ݐ݊݅

ேೃିଵ

ୀ

To increase the information available on the itiCPIstack, we classify the total
interference for a given core on each resource, ݅݊ݐ

 , according to the core that is
generating it, i.e., the interference suffered by core ݅ on resource ݊ because of each
core ݆ of all ܰ cores is defined as ݅݊ݐ←

 , so that the total interference on a resource
can be expressed as:

ݐ݊݅
 ൌ ←ݐ݊݅

ேିଵ

ୀ

The final itiCPIstack is given by:

ݐ ൌ ݑ ݈ ݑ
 ←ݐ݊݅

ேିଵ

ୀ

ேೃିଵ

ୀ

6/28 4000109680/13/NL/HK

3.1 itiCPIstack in the NGMP

To build the itiCPIstack we need the following terms:

 .݅ , or total execution cycles for each coreݐ .1
 .݅ , or useful core cycles for each coreݑ .2
3. ݈, or local stall cycles for each core ݅.
ݑ .4

, or useful cycles for each core ݅ in each resource ݊.
←ݐ݊݅ .5

 , or inter-task interference cycles for each core ݅ in each resource ݊ and each
interfering core ݆.

The first three terms are already available through NGMP PMCs.

1. Term	1	has	its	own	PMC.		
2. Term	2	matches	with	instruction	count,	since	in	a	stall‐free	NGMP,	IPC	ൌ1.		

a. Note	 that	 while	 this	 is	 true	 for	 many	 instructions,	 there	 are	 a	 few	
multi‐cycle	 instructions,	 such	 as	 mult	 /	 div	 and	 the	 various	 FPU	
instructions.	

b. A	 solution	 to	 this	 is	 having	 a	 cycle	 counter	 that	 only	 counts	 those	
sycles	in	which	the	fetch	stall	signal	is	not	active.	

3. Term	3	can	be	obtained	by	subtracting	term	2	from	term	1,	which	gives	us	the	
stall	cycles,	and	further	substracting	icache	and	dcache	hold	PMCs	which	will	
give	us	 the	stall	 cycles	not	 caused	by	memory	accesses,	 i.e.,	 local	 stall.	Note	
that	 there	 is	 an	overlap	between	 ic‐hold	and	dc‐hold,	which	 can	be	used	 to	
increase	the	precision	of	this	term.	

4. Terms	4	and	5	need	to	be	accounted	for	each	resource	and	will	require	some	
hardware	support	 in	 the	 form	of	new	PMCs,	since	 they	cannot	be	 indirectly	
obtained	from	available	PMCs.	In	the	NGMP	the	shared	resources	that	we	are	
going	to	consider	are:	
 AMBA processor bus.
 Shared L2 cache (or Last Level Cache, LL$).
 Memory controller.

The itiCPIstack will look like the one in Figure 1. The core component covers: 1) all
the cycles in which the program is proceeding with no stalls, i.e. useful cycles; and 2)
all the cycles in which the pipeline is stalled (no instruction can be committed) due to
a local stall, for instance a FP operation blocking the processor due to its long latency.

The bus component covers the cycles in which the processor is stalled due to the
processing of a request in the bus. This processing covers the actual transfer time of
the request, i.e., intrinsic latency, and the inter-task interference delay.

Similarly the last-level cache (LL$) component covers the cycles in which the
pipeline is stalled due to a cache request being processed. In the case of loads and

Figure 1 Detailed itiCPIstack of the NGMP

7/28 4000109680/13/NL/HK

instructions they are blocking. In the case of stores, this situation happens when the
store buffer is full. Also the LL$ covers the inter-task interference that corresponds to
the misses caused because other cores evicted the data of the actual core.

The memory part covers the cycles actually accessing the memory, and the cycles
accounting for the inter-task interference which correspond to the cycles waiting on
the FIFO queue.

8/28 4000109680/13/NL/HK

 Accounting the interference on the NGMP 4
We envision having an inter-task interference module (iti-module), which is similar to
a statistics unit, which concentrates the main logic required for computing the
CPIstack. The iti-module is connected to other components that export information
about some events needed by the iti-module. Figure 3, shows how the iti-module
should be connected to other modules for the case of the NGMP, in which the main
shared resources are the bus, the LLC and the memory controller.

Figure 3 iti-module.

Each resource, except the core, will have to provide two pieces of information for
each cycle: 1) the core that is using the resource, which will allow to track the useful
cycles; 2) the cores that are waiting for the resource, which will allow to track if a
core is interfered and in case it is so, the actual core using the resource will be
assigned as the interferer.

4.1 Processor cores

Because of the existing write-buffer, not all interference and working cycles in a
resource of the system have to be accounted. For instance, if a store is sent to the
memory hierarchy by the write-buffer and the core is not stalled and can continue
executing, all the interference and intrinsic latency cycles that the store will suffer are
not going to affect the final execution cycles of the core. Our itiCPIstack
infrastructure needs to know at any point in time is whether the processor core is
stalled to be able to count the effective cycles of interference or intrinsic latency of
each resource, i.e. the cycles that contribute to the final execution time. For that
purpose each core has to provide a signal that says if the core is stalled or not.

A processor can be stalled because of different reasons:

- Fetch stage, in case of an instruction cache miss, cannot feed the next pipeline
stages, thus stalling the pipeline.

- The same happens in the memory stage when a load instruction accessing the data
cache misses.

9/28 4000109680/13/NL/HK

- Also in the memory stage if a store finds the store-buffer full, stalls the pipeline.

- When the integer/floating-point pipelines need more cycles to execute an
instruction, this generates backpressure that stalls the pipeline.

Several of these situations can happen at the same time, so we need to choose a
criteria to define when the processor is stalled. In our case we choose to consider the
stalled when the fetch stage is not able to fetch a new instruction. This will happen
because of icache misses or backpressure, which can be due to dcache misses or
pipeline stalls.

4.2 AMBA bus

One of the main conclusions in [JJQF2014] is that a single AMBA request from a
given task can block other tasks’ accesses to the bus. This is so, because one request
can be locked by the master sending it for an unbounded period of time.
Hence, our approach to measure inter-task interferences is to measure the time that a
given task waits for the other when it tries to get access to the bus. Once a master
(core) is ready to send a request it raises the HBUSREQ signal in AMBA AHB. When
the arbiter grants access to that master is asserts the HGRANT signal for that master
and puts the master id in the HMASTER signal. For a given task A, the time tgrant-up--
treq-down gives the time a request from a given task TA is waiting to get access to the
bus (tA-iti). This is the waiting time caused by inter-task interference.

Figure 4 Performance vs energy efficiency comparative

We propose to send HBUSREQ signals from each master and the HMASTER signal from the
arbiter to the iti-module. By checking these signals the iti-module can infer which master is
using the bus, thus the useful cycles, and the time a master has been waiting for another
master.

10/28
4000109680/13/NL/HK

Figure 5 Timing of the different signals for the AMBA bus.

Figure 5 shows an example for 4 masters (cores) executing tasks TA, TB, TC and TD
respectively. When TA sends a request, the time the request signal is up and the grant
signal from the arbiter is low there is inter-task interference. The iti-module has NxN
registers. Each master has associated N registers, N-1 of which hold the ITI
interference delay it suffers from the other N-1 masters. The last register stores the
intrinsic latency to process the request.

4.3 Memory

In the case of the memory, we assume that it consists of the FIFO queue (which in
fact corresponds to the L2 miss queue), the memory bus and the actual NGMP
memory controller, which translates an AMBA request into DRAM commands. When
a request from a core ݅ arrives to the FIFO queue, if it is empty, it is put on the top of
the FIFO and accesses the memory immediately consuming the intrinsic latency or
useful cycles ݑ

. Otherwise, when other requests are on the FIFO, it has to wait for
them to finish since the memory bus and memory controller only accept one request at
a time, i.e. the cycles on the memory will be ݅݊ݐ

 ݑ
.The former addend is

the time the request waits to get access to the memory controller, the latter is the time
the request takes to be processed once it is granted access and it cannot be further
delayed by any preceding request.

The request at the top of the FIFO queue is the one accessing the memory and the rest
of the request on the FIFO queue are being interfered by the top one. In this case, each
position in the FIFO queue will send a signal to the iti-module with the core id of the request
in that position, if any. The iti-module will consider useful cycle in memory for core ݅, if that
core is on the FIFO’s top position. If there is any other core ݆ on the FIFO queue, the iti-
module will consider an interference cycle on the memory caused by core ݅.

This forces to propagate the core id up to the memory controller, since that knowledge is lost
once you go out of the AMBA processor bus.

4.4 Shared last level cache

There are two types of inter-task interferences in the access to the cache.
- Access ITI happens when the request of a task wants to use the cache and is

affected by the access of a previous request from another task. For instance, this
happens due to the variable hit/miss latency that depends on the previous access.

11/28
4000109680/13/NL/HK

In our case we will neglect this interference, since its effect is small compared to
the content ITI explained below.

- Content ITI happens when a task suffers a miss in the access to cache due to the
fact that another task evicts its data.

If the cache is partitioned using way partitioning, the task suffers only access inter-
task interferences. However, we expect this to be small and we neglect its effect.

To account intrinsic latency or useful cycles in the cache for the core under analysis,݅,
we count the number of hits,	݄݅ݏݐ, and misses, ݉݅ݏ݁ݏݏ, when the core is stalled, by
signaling hits and misses to the iti-module. When computing the itiCPIstack, the
intrinsic latency or useful cycles of the cache will be computed considering the hit-
penalty and the miss-penalty in the cache:

ݑ
ଶ‐hits ൌ ݏݐ݄݅ ൈ hit‐penalty

ݑ
ଶ‐misses ൌ ݏ݁ݏݏ݅݉ ൈ miss‐penalty	

In case the cache is not partitioned, the content ITI has to be computed, which we call
←ݐ݊݅

ଶ . To compute that value for each core we need two things: (1) using per-cache-
line owner bits that allow determining the number of inter-task evictions one task
suffers due to other co-running tasks. And second, using an Auxiliary Tag Directory
(ATD) that allows identifying inter-task interference misses and better approximating
the cycles each task is waiting due ITI with other tasks in cache contents, which can
only be exactly be derived for direct mapped caches. Since, both thing incur into a
high hardware cost, we propose another two alternatives with smaller cost.

4.4.1 Non-partitioned cache: Auxiliary Tag Directory (ATD) and
per-cache-line owner bits

Under this approach we add an ATD for the core under analysis. The ATD behaves
equally to the tag directory of the cache, but only the core under analysis is able to
modify it. The ATD then reflects the tag directory of the cache, when the core under
analysis runs in isolation. This means that if a request from that core hits in the ATD
and misses on the cache, it is an iti-miss. The ATD provides very precise information
of when a task suffers an ITI content interference but provides no information about
the task causing the inter-task interference. That is, the ATD allows deriving the exact
amount of cycles each task waits due to inter-task interference in cache contents to
other tasks but not the specific task causing it (interfering task). To derive the
interference cycles, ݅݊ݐ

ଶ, the cache will signal when a iti-miss happens and when that
iti-miss is resolved. Since only one request per core is allowed at a time, all the cycles
spent in the memory and the cache will be accounted as interference.

Now we have the total amount of interference suffered, we need to distribute it
through the interferers or cores. Finding the precise interfering task is complex for a
set associative cache, where data allocated to a given memory location has a unique
set in which it can be located but W different ways. In this case, the core that evicts
the actual cache-line is not the only interferer, but also all the cores that accessed that
line and modified the LRU state. Every time a core is evicting a cache-line, is
generating a LRU accesses to every W cache-line owners in that cache-set. Also we
cannot know if the evicted data is going to be reused again in the future or not.

12/28
4000109680/13/NL/HK

To be able to distribute the total interference to each interfering core, we will count
the inter-task evictions that each core generates. For that purpose, we add log2 Nc bits
to each cache line. These bits provide the id of the task that allocated that cache line.
We further have Nc x Nc registers storing inter-task LRU accesses in the cache. When
a core j suffers a miss, it reads the core id, eg. i, of all the cache-lines in the cache-set
where the evicted cache-line is. The intertask interference counter of the task whose
LRU state has been modified by the eviction is then incremented: ܽܿܿ݁ݏ݁ݏݏ←.

The resulting interference will be distributed according to the number of inter-task
evictions generated:

ݑ
ଶ ൌ ݑ

ଶ‐hits ݑ	
ଶ‐misses

←ݐ݊݅
ଶ ൌ ݐ݊݅

ଶ ←ݏ݁ݏݏ݁ܿܿܽ
∑ ←ݏ݁ݏݏ݁ܿܿܽ
ேିଵ
ୀ
ஷ

With this, we already have all the necessary elements to calculate the itiCPIstack.

4.4.2 Non-partitioned cache: Auxiliary Tag Directory (ATD)

As in the previous approach, we still have the ATD, but we don’t have the per-cache-
line owner bits. In this case, the ATD provides the ݅݊ݐ

ଶ term and to distribute it, we
count the evictions that each core generates ݁ݐܿ݅ݒ . It is clear that the number of
evictions coincides with the number of misses. The resulting interference will be
distributed according to the number of evictions generated:

←ݐ݊݅
ଶ ൌ ݐ݊݅

ଶ ݐܿ݅ݒ݁
∑ ݐܿ݅ݒ݁
ேିଵ
ୀ
ஷ

ݑ
ଶ ൌ ݑ

ଶ‐hits ݑ	
ଶ‐misses

ݐܿ݅ݒ݁ ൌ ݏ݁ݏݏ݅݉

4.4.3 Non-partitioned cache: Per-cache-line owner bits

In this case, we still have the per-cache-line owner bits, but we don’t have the ATD.
Putting an ATD can have a hardware cost similar to increasing the cache size, since
we are adding an entirely new tag directory, which can easily be close to half of the
actual cache area. If we don’t have an ATD, we cannot identify iti-misses, thus, we
cannot know if the cycles spent in the cache and the memory are caused by a normal
miss or an iti-miss. Because of this, we cannot breakdown the time spent in the L2
cache and in the memory controller. So every cycle assigned to the memory or to
misses in the L2, will be collapsed into the interference term, only hits in the L2 can
be considered as useful cycles, since misses can potentially be iti-misses, being part of
the interference in that case:

ݐ݊݅
ଶା ൌ ݑ

ଶ‐misses ሺ݅݊ݐ
 ݑ

ሻ

13/28
4000109680/13/NL/HK

The resulting interference will be distributed according to the number of LRU
accesses generated:

←ݐ݊݅
ଶା ൌ ݐ݊݅

ଶା ←ݏ݁ݏݏ݁ܿܿܽ
∑ ←ݏ݁ݏݏ݁ܿܿܽ
ேିଵ
ୀ
ஷ

ݑ
ଶା ൌ ݑ

ଶ‐hits ←ݐ݊݅	
ଶା

4.4.4 Non-partitioned cache: minimum support

In this case, neither the ATD nor the per-cache-line owner bits are present. In this case
we need to distribute the ݅݊ݐ

ଶା term through the different interfering cores we
use the number of evictions ݁ݐܿ݅ݒ . The resulting interference will be distributed
according to the number of evictions generated:

←ݐ݊݅
ଶା ൌ ݐ݊݅

ଶା ݐܿ݅ݒ݁
∑ ݐܿ݅ݒ݁
ேିଵ
ୀ

ݑ
ଶା ൌ ݑ

ଶ‐hits ←ݐ݊݅	
ଶା

14/28
4000109680/13/NL/HK

 Results 5

In order to test the proposed performance monitoring counters, we have modeled the
behavior of the NGMP on a hardware simulator based on SoCLib. In this simulator
we have implemented all the NGMP characteristics described in Section 2. For time
constraints we have not evaluated all the PMC proposals made in Section 4 but a
subset of them.
In particular for the proposals for the L2 cache we have evaluated the one in
subsection 4.4.4, no ATD and no core ID. In this proposal, there is no breakdown
between L2 and memory cycles, as it is impossible to determine interference in L2
without an ATD.

5.1 Experimental setup

To exercise the implemented PMCs we have run several executions of different
combinations of benchmarks. We have used two types of benchmarks:

 Control applications, which receive interference.
 Payload applications, which cause interference.

In our setup, we have one control application running in a core, and three payload
applications running in the other cores. We have collected the data generated by the
PMCs regarding the control application.

As control applications we have used the well-known EEMBC Automotive
benchmarks, and the Attitude and Orbit Control System (AOCS) from the EagleEye
project [EAGLEEYE].
As payload applications we have used the ESA “On board data processing” (OBDP)
application as well as set of microbenchmarks designed to stress the shared resources
differently [MULTIOS]. The microbenchmarks used for the experimentation are the
following:

 L2-full: The microbenchmark executes almost 100% load instructions. Its
memory footprint is 200KB, so when executing 3 instances of this
microbenchmark, it will cause a very high amount of L2 misses.

 L2-half: The microbenchmark executes almost 100% load instructions. Its
memory footprint is 40KB, so when executing 3 instances of this
microbenchmark, it may cause a high amount of L2 misses. It will affect
memory intensive control applications, while control applications with small
memory footprint will not have a very noticeable increase of L2 misses.

 st: The microbenchmark executes almost 100% store instructions. Its memory
footprint is small, but it stresses the bus in higher degree than FULL and
HALF microbenchmarks, because the L2 latency for writes is 0.

 OBDP: European Space Agency’s “On board data processing application”.

Payload benchmarks are always executed in groups of 3, which are run concurrently
in 3 separate cores. We have defined the following sets of payload benchmarks:

 full: it is composed of three L2-full benchmarks.
 half: it is composed of three L2-half benchmarks.
 st: it is composed of three ST benchmarks.

15/28
4000109680/13/NL/HK

 OBDP: it is composed of three OBDP benchmarks.
 mix: it is composed of one L2-full, one L2-half, and one OBDP benchmark.

5.2 Benchmark characterization

In order to provide insight in the results obtained, we have characterized each of the
control benchmarks. We have decided to use the number of bus accesses per kilo-
instruction (BAKI) as a metric to determine the likeliness of the benchmark to become
interfered by the payload benchmarks. In the following table we present the result of
this characterization:

 Benchmark BAKI

EEMBC Automotive

a2time 204
Aifftr 170
Aifirf 271
Aiifft 174
Basefp 233
Bitmnp 70
Cacheb 330
Canrdr 239
Idctrn 135
Iirflt 254
Matrix 88
Pntrch 146
Puwmod 235
Rspeed 272
Tblook 282
Ttspkr 302

ESA AOCS 158

To provide an intuition of how intensively the payload benchmarks access the bus, we
have also modeled this for them:
 Benchmark BAKI
ESA OBDP 93

Micro-benchmarks
ST 347
FULL 1376
HALF 834

The payload micro-benchmarks require an explanation to undertand their BAKI
values:

 ST presents a low BAKI because it alternates store and nop instructions, hence,
the maximum BAKI would be 500.

 FULL presents a BAKI higher than 1000, which may look surprising as there
is more than one bus access per instruction. This is because FULL is an
unrolled loop where every instruction is a load. The unrolled nature of the loop
causes some instruction cache misses, in addition to the data cache misses that
the benchmark is supposed to cause.

 HALF is similar to FULL, but less misses occur.

16/28
4000109680/13/NL/HK

5.3 Results

In this sections the results obtained using the proposed PMC infrastructure are
presented. The results are drawn as a cycle-stack. A cycle-stask is the same as a CPI
stack, the cycle count by the number of instructions executed by the program. Cycle
tasks are derived for each control benchmark in isolation and with payload
(interfering) benchmarks, in the four scenarios described in section 5.1.

Different subsections will be used to present the results; first we will show the results
for particularly interesting cases, where we can see a very high amount of interference
detected in different components of the chip. Then, the rest of results are presented.

The figures in the following subsections present the cycle stack of the control
benchmark, with time (number of CPU cycles) in the Y axis, and different payload
configurations in the X axis (being ISOL the cycle stack for the execution of the
control benchmark in isolation). Each graph comes with a legend showing different
places where CPU cycles are spent:

 Core-run: the core is fetching an instruction this cycle
 Loc-stall: the core is running, but not fetching an instruction. This is caused by

instruction requiring more than 1 execution cycle and stalling the pipeline.
This stall is intrinsic to the core, i.e not caused by other cores and unavoidable.

 Bus-run: the core is accessing the bus. This time is spent in the bus regardless
of interferences.

 bus1, bus2, bus3: cycles spent waiting for the bus due to interferences caused
by cores 1, 2, or 3.

 L2/MC-run: cycles spent in the L2 or memory caused by the control
benchmark itself.

 L2/MC1, L2/MC3, L2/MC3: cycles spent in the L2 or memory controller due
to interference caused by cores 1, 2, or 3.

5.3.1 High bus usage: EEMBC cacheb
Cacheb is the control benchmark with the highest BAKI (330) of all the control
applications used in the experiment.

17/28
4000109680/13/NL/HK

Figure 6 Cacheb cycle stack.

As we can see in Figure 6, the core spends a considerable amount of time stalled
waiting for the bus, even when running in isolation. This is expected because of the
high BAKI of the benchmark, and confirms it is a suitable metric to measure shared
resource use.
We can see that the amount of time spent waiting for the L2 or memory is very small
for the execution in isolation. This happens because the accesses to the bus are mainly
stores that do not block the core (thanks to the write buffer). We can see that the
amount of interference detected in the L2 and memory controller is greatly increased
by the presence of contenders, especially FULL and OBDP, which systematically
miss the L2. This interference is not found in the bus thanks to the bus split.
The slowdown caused by the payload benchmarks is 46% (in the case of OBDP).

5.3.2 Low bus usage: EEMBC bitmnp
Bitmnp is the control benchmark with the lowest BAKI (77) of all the control
applications used in the experiment.

18/28
4000109680/13/NL/HK

Figure 7 Bitmnp cycle stack.

As we can see in Figure 7, the core spends a small time stalled waiting for the bus,
solving a L2 miss, or accessing the memory controller. This small amount of time is
spent in all cases, including the execution in isolation.
In the cycle stack we can see that the benchmark is not sensitive at all to interference
in the . We can also see that some interference is detected in the L2 and memory
controller, which is the main cause of slowdown (17%).
We can also see that the amount of time spent waiting for L2 or MCis very small for
the execution in isolation. This happens because the accesses to the bus are mainly
stores that do not block the core (thanks to the write buffer).

5.3.3 Sensitive to L2 and MC interference: ESA AOCS and EEMBC
cacheb

AOCS and cacheb are the control benchmark which present the highest sensitivity to
interference in the L2 and MC.

19/28
4000109680/13/NL/HK

Figure 8 AOCS cycle stack.

In Figure 8 we can see a very high amount of interference in the L2 and MC. In the
case of the FULL payload configuration, the amount of time spent accessing L2/MC
caused by this interference is 10 times bigger than the amount of time that was spent
in isolation. This interference is the main contribution to the 34% slowdown detected.

Cacheb, already discussed in subsection 5.3.1 is very sensitive to memory controller
interference. As we explained in the aforementioned subsection, this is caused by a
very high BAKI and low reuse of L2 data, which triggers L2 misses and memory
accesses

5.3.4 Sensitive to bus interference: EEMBC matrix and basefp
As we used an NGMP simulator with bus split, we have found that interference in the
bus is negligible. To illustrate this, we present two cases:

 EEMBC matrix benchmark, the one suffering the highest increase in bus use
relative to its execution in isolation. The bus usage is increased by 120%, but
this barely accounts for 2% of the total execution time of the benchmark.

 EEMBC basefp, which is the benchmark which has to wait for bus
interferences for the longest amount of cycles, relative to the total execution
time of the benchmark. The benchmark is interfered in the bus for 6% of the
execution time (vs ST).

In both cases, the time accessing the bus is so small that it barely is noticeable in
the graph. Below, a graph for EEMBC matrix is presented.

20/28
4000109680/13/NL/HK

Figure 9 matrix cycle stack.

In Figure 9 we can see that the amount of interferences in the bus is not even
noticeable in the graph. As a side note, matrix is the benchmark with highest loc-stall,
caused by the high number of floating point instructions executed by the core.

In Figure 10 we can see a noticeable amount of bus interferences when running the
Basefp benchmark vs the ST.

21/28
4000109680/13/NL/HK

Figure 10 Basefp cycle stack.

5.3.5 Highest impact on execution time: EEMBC basefp
Basefp is the control benchmark which experiences the highest impact on its
execution time caused by inter task interferences.

As it can be seen in Figure 10, the benchmark is slowed down a 49% in the case of
FULL. This slowdown is mainly caused by interferences in the memory controller.
This benchmark also has a high BAKI (233) and probably does a very low L2 data
reuse, a behavior that is similar to cacheb explained in section 5.3.1.

5.3.6 Other benchmarks
Other EEMBC benchmarks with less remarkable characteristic behavior have been
used as control benchmarks. In this subsection their cycle stacks are presented for
completeness.

Figure 11 A2time cycle stack.

22/28
4000109680/13/NL/HK

Figure 12 Aifftr cycle stack.

Figure 13 Aifirf cycle stack.

23/28
4000109680/13/NL/HK

Figure 14 Aiifft cycle stack.

Figure 15 Canrdr cycle stack.

24/28
4000109680/13/NL/HK

Figure 16 Idctrn cycle stack.

Figure 17 Iirflt cycle stack.

25/28
4000109680/13/NL/HK

Figure 18 pntrch cycle stack.

Figure 19 Puwmod cycle stack.

26/28
4000109680/13/NL/HK

Figure 20 Rspeed cycle stack.

Figure 21 Tblook cycle stack.

27/28
4000109680/13/NL/HK

Figure 22 Ttspkr cycle stack.

28/28
4000109680/13/NL/HK

References

NGMP Quad Core LEON4 SPARC V8 Processor LEON4-NGMP-QUADLION Data
Sheet and User’s Manual

JJQF2014 Javier Jalle, Jaume Abella, Eduardo Quinones, Luca Fossati, Marco Zulianello
and Francisco J. Cazorla.
AHRB: A High-Performance Time-Composable AMBA AHB Bus
In The 20th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2014). Berlin, Germany. April 2014.

MULTIOS RFQ- 3-13153/10/NL/JK Multicore OS Benchmark
EAGLEEYE Bos, Victor, EagleEye: Evolution towards Time and Space Partitioning.

Software & Data Systems Division Final Presentation Days, 2013 ESA

