

1/28 4000109680/13/NL/HK

Multi-core PMCs: analysis and architectural

definition

Document Information

Author Mikel Fernández, Francisco J. Cazorla,

Contributors Luca Fossati, Jaume Abella

Reviewer Jaume Abella, Leonidas Kosmidis, Javier Jalle

Keywords Performance Monitoring Counters

2/28 4000109680/13/NL/HK

Table of Contents
1 Introduction ... 3

2 IBM POWER7 ... 4

2.1 CPI stack .. 6

3 Intel Family .. 8

3.1 PMC infrastructure .. 8
3.2 PMC availability in each processor model .. 9
3.3 PMC classification .. 9
3.4 Interesting PMCs .. 10
3.5 Summary .. 11

4 ARMv7-A .. 12

4.1 Performance Monitoring Unit .. 12
4.2 PMC classification .. 13
4.3 Cortex-A7 and Cortex-A9 ... 13
4.4 Cortex-A15 .. 13
4.5 big.LITTLE .. 15

4.5.1 Corelink CCI-400 Cache Coherent Interconnect ... 16

5 Freescale P4080 .. 19

5.1 Performance Monitors .. 19
5.1.1 Per-core monitors .. 19
5.1.2 SoC monitors ... 20
5.1.3 Interesting PMCs ... 20
5.1.4 Summary .. 21

6 Aeroflex Gaisler NGMP ... 22

6.1 PMC infrastructure .. 22
6.2 Performance Monitoring Counters .. 22
6.3 Maximum count mode .. 23

7 Performance Monitoring Counter classification across processors 24

8 Discussion ... 27

References ... 28

3/28 4000109680/13/NL/HK

1 Introduction

The main goal of this activity is to understand the philosophy of the Performance-
Monitoring Counter (PMC) implemented in current processors in this activity. We are
not seeking for a list of all performance-monitoring counters (PMCs) of the analysed
processors but to understand their philosophy. We are after a set of monitoring
counters that provide some information about the worst-case behavior of the
application, so rather than PMCs they should be called WCMCs (worst-case
monitoring counters). It is also worth noting that we focus on inter-task interference
effects so our focus is going to be on analyzing existing multicore processors PMC.

Before starting this activity our intuition was that PMCs in current processors provide
information about inter-task interferences explicitly. As a first step to confirm this
intuition, this document analyses the main features of some of the multicore products
of some of the major chip providers: Intel, ARM, IBM and Freescale.

We also analyse the PMC support in the Aeroflex Gaisler NGMP, and compare its
infrastructure and events to the ones available in the other multicore processors.
Finally, a set of WCMCs are proposed to be added in the NGMP based on the
knowledge obtained in the analysis of the existing multi-core processors.

4/28 4000109680/13/NL/HK

2 IBM POWER7

The IBM POWER7 is an 8-core multicore processor in which each core is 4-thread
SMT. Moreover, every core is divided into two clustered execution pipelines, with
each one supporting two threads. Threads in the same cluster share more resources
than threads in different clusters, although threads in different clusters still share some
on-core resources. Hence, resources are shared a) between threads in different cores,
b) between all threads running in a core, c) between threads running in a cluster and d)
between threads running in different clusters.

The POWER7 core has a dedicated 32-KB 4-way instruction cache and a 32-KB data
cache. The first level of address translation is formed by an instruction effective-to-
real-address translation (IERAT) and a D-ERAT. The I-ERAT consists of two 32-
entry cache-like structures. The D-ERAT consists of two 64-entry cache-like
structures. The second level of address translation is comprised of a Segment
Lookaside Buffer (SLB) with 32 entries per thread and a Translation Lookaside
Buffer (TLB) with 512 entries. Each core has a 256KB L2 cache and a local 4MB L3
region that can be shared between all cores forming a 32MB global L3 cache.

Figure 1 Block diagram of the IBM POWER7

Figure 2 provides a view of the core resources at the core level and how they are
shared among the threads in the different clusters.

5/28 4000109680/13/NL/HK

Figure 2 Block diagram of the core resources and how they are shared. [P7-desc].

Program performance analysis in such a complex core with resources shared among
different threads is complex. The POWER7 [P7-PMCs] processor comprises a
Performance Monitoring Unit (PMU) with six thread-level Performance Counter
Monitors (PCMs). Four of these are programmable from software to monitor the
desired (four) events at the same time. There are more than 500 possible performance
events that can be read. However, performance counters are defined by groups and the
PMU can only watch events of the same groups at one time. Some counters are per-
thread and others per-core.

We can regard the ‘type of events’ covered by a particular PMC as follows:

- Number of cycles a resource is full (with this causing the stall of the processor),

- Number of cycles a resource is empty. This can be of a private resource of a
shared resource. The latter meaning that none of the threads that can generate a
request to that resource have done so.

- Number of instructions of a given type

- Number of events of a given type (e.g. prefetch requests sent, …)

- Number of references to a given resource (e.g. L2 accesses, …)

- Quantity of data transferred

- Stall cycles due to inter-task conflict

6/28 4000109680/13/NL/HK

Table 1 Example of PMCs in the POWER7

PMC name Type/subtype Description

PM_1PLUS_PPC_DISP cyc count Cycles at least one Instr. Dispatched

PM_BR_MPRED Inst. Count Number of Branch Mispredictitions

PM_CMPLU_STALL_DCACHE_MISS Stall cycle
count

Completion stall caused by D cache miss

DATA_FROM_L2 data count Data loaded from L2. The processor’s
Data Cache was reloaded with data from
the local chiplet's L2 cache due to a
demand load

PM_GCT_NOSLOT_IC_MISS GCT Empty cycle
count

empty by I cache miss Cycles when the
Global Completion Table has no slots
from this thread because of an Instruction
Cache miss.

M_L3_MISS L3 Misses

Event count Total L3 references that miss the L3 on a
per core basis. This event is delivered from
the L2 domain, so must be scaled
accordingly (divided by 2)

PM_L2_DC_INV Event count.
Inter-task
interference?

Dcache invalidates from L2 Total L1
dcache Invalidates sent by L2 over reload
bus on a per core basis. The L2 is inclusive
of L1 icache and L1 dcache, so it has to
invalidate the caches when it rolls over.
This event is delivered from the L2
domain, so must be scaled accordingly
(divided by 2)

PM_CMPLU_STALL_THRD

stall cycle count
Inter-task
conflict

Completion Stalled due to thread conflict.
Group ready to complete but it was
another thread's turn

2.1 CPI stack
An interesting feature of POWER7 is that people from IBM has created a CPI stack of
the POWER7 based on its PMCs. The CPI stack relates functional processor stages
with performance counters to show which CPU functional unit is generating stalls.

The bar on the left cycles shows the total cycles in which the application was running.
These cycles are breakdown intro 3 categories in the second column.

7/28 4000109680/13/NL/HK

Figure 3 POWER7 CPI stack model
The focus is put on the Global Completion Table (GCT or Reorder Buffer, ROB). We
have the following 3 categories: the cycles in which the application is stalled due to
any reason Completion_Stall_Cycles; the cycles in which the application is stalled
because some resources are idle GCT_empty_cycles. And the cycles in which
instructions are actually being committed Completion_Cycles.
Completion_Stall_Cycles, in a third breakdown, is split into more detail categories
that generate the slowdown the Fixed-Point Unit, The Vector unit, the load store unit,
the instruction-fetch unit and the stall due to SMT execution. The other components
are similarly breaked down.

Metrics in white boxes are derived from a single PMC, while, metrics in gray boxes
are derived from different PMCs.

8/28 4000109680/13/NL/HK

3 Intel Family

Intel processors designs focus on maximizing average performance. Usually Intel
processors feature superscalar execution, complex branch predictors, out of order
execution, and several levels of cache memories (up to three). PMCs provided by Intel
focus on providing performance metrics for a single process. To this end, the
architectures provide counters for analyzing branch predictor effectiveness, cache
misses due to speculative execution, coherence protocol metrics, etc.

PMCs provided by Intel are not designed to help identify bottlenecks in resources
shared between cores, or to quantify the magnitude of interactions in these shared
resources. A lot of counters provide measurements for time spent accessing a shared
resource, but they measure average or total accumulated time, and they do not identify
possible interferences caused by other cores.

For example, there is a counter called INST_QUEUE_WRITES which counts the
number of instructions written to the instruction queue. There is another counter
called INST_QUEUE_WRITE_CYCLES which counts the number of cycles spent
writing to this same queue. As a result, we are able to obtain the average number of
cycles it takes to write, but there is not any counter to hold the maximum observed
latency observed.

Most counters can be configured to measure events for either from a core or all the
cores, an agent1 or all agents, and other kinds of specific qualifications (such as
detection of all events/exclude prefetching events, or counts for different states for the
coherence protocol used).

Many shared resources have PMCs that measure their behavior (in terms of number of
accesses, average latency, number of cache misses, etc), and in some cases and with
some experimentation, information about inter-processor conflicts can be guessed: for
instance, we could approximate the amount of L2 cache lines evicted by another
process comparing the observed number of L2 misses when running in isolation with
the number of L2 misses when running concurrently with a competing process.
Unfortunately, this is not possible at deployment time, because the observed events
are dependent on the specific way tasks have been scheduled.

Some of the PMCs that measure shared resource behavior which could be used to
detect interference between cores are described in the following sections.

3.1 PMC infrastructure
Intel names the PMC control registers as performance event select registers (shortened
as IA32_PERFEVTSELx), and the performance monitoring counters are shortened
as (IA32_PMCx). Intel provides some architectural infrastructure to query about the
availability of PMCs, but ultimately, the amount of counters available is model
dependent. The width of the PMCs is also implementation dependent. This
information can be queried from the CPUID.0AH leaf.
The architectural infrastructure for PMCs, which comprises 3 different versions of the
PMC facilities, can be also queried at run time. Each newer version provides upgrades

1 Intel defines “Agent” as a component (core or other kind) which is able to cause a PMC event.

9/28 4000109680/13/NL/HK

on the infrastructure: for example, the 3rd version provides improved support for
multi-threaded processors.

3.2 PMC availability in each processor model
Intel provides a small set of PMCs which are available throughout all their processors.
These are called Architectural Performance Monitoring Counters. The rest of the
PMCs are available for some processors. Intel organizes similar processors in
generations of processors. Each processor generation has the same PMCs available.
The following table summarizes which processors belong to each generation:

Table 2 Intel processor generations
Generation (Codename) Processors
4th Generation (Haswell) Xeon E3-1200 v3
3rd Generation (Ivy Bridge) Xeon E3-1200 v2
2nd Generation (Sandy Bridge) Core i7-2xxx

Core i5-2xxx
Core i3-2xxx
Xeon E3-1200

1st Generation (Nehalem) Core i7
Xeon 5500 Series

(Westmere) Xeon E7-xxxx

The PMCs described in later sections are classified based on availability in one or
more processor generations.

3.3 PMC classification
To ease the understanding of Intel’s philosophy on PMCs, we have classified them in
categories.
- Instruction type: number of retired instructions of a certain type (branch, load,

store, etc).

- Event count: microinstructions issued, branch instructions executed, number of
speculative instructions retired, number of miss-predictions, number of cache
misses.

- Reference count: number of referenced lines in each MESI state, number of each
level of cache references.

- Threshold exceeding event count: number of times a threshold specified in
number of cycles has been exceeded for a given event. The threshold value is
configured by the user.

- Number of outstanding requests per core: cache requests, all offcore requests, etc.
in the moment of reading the counter.

- Busy resource cycles: number of cycles in which the caches are busy, a resource is
unavailable, stalled core, etc.

- Cycle count: unhalted core cycles, unhalted thread cycles, cycles with outstanding
cache misses, TLB walk duration, etc.

10/28
4000109680/13/NL/HK

- Resource-specific event count: number of lines brought to each cache, data and
instruction TLB misses for loads or stores, completed page walks per page size,
number of split memory accesses, number of retired load/store instructions in each
memory in the hierarchy, etc.

3.4 Interesting PMCs
Intel implements a high number of PMCs in their processors, but they are not focused
on worst observed case, or on interference between cores detection. In this chapter a
selection of the most relevant PMCs for the purpose of creating a set of WCMC is
presented.

Table 3 PMCs with possible WCMC potential
PMC name Description

LD_BLOCKS.NO_SR Measures split load operations (i.e. data is split
throughout two different cache lines) blocked
because all resources for handling them are in
use.

L2_LINES_OUT.* Measures L2 clean/dirty line eviction caused by
demand or by the prefetcher.

.DEMAND_CLEAN Clean lines evicted by demand

.DEMAND_DIRTY Dirty lines evicted by demand

.PF_CLEAN Clean L2 cache lines evicted by the MLC
prefetcher.

.PF_DIRTY Dirty L2 cache lines evicted by the MLC
prefetcher.

.DIRTY_ALL Dirty L2 cache lines filling the L2.

LONGEST_LAT_CACHE.* References and misses to the last level of cache,
originating from each core.

CYCLE_ACTIVITY.CYCLES
_L2_PENDING

Number of cycles with pending L2 miss loads

MEM_LOAD_UOPS_RETIRED
.*

Number of load micro-operations which were
served by each memory in the hierarchy.

MEM_TRANS_RETIRED.LOA
D_LATENCY

Counts the amount of loads whose latency is
above a user defined threshold, but only a small
fraction of the overall loads are randomly
sampled.

This counter can help finding an approximate
worst observed behavior

MEM_LOAD_RETIRED.OTHE
R_CORE_L2_HIT_HITM

Load instructions that hit another core’s L2 cache

Measure positive interaction between cores.

There are available some coherence counters as the one shown next. As control
(critical) applications are expected to be single-threaded these counters are not

11/28
4000109680/13/NL/HK

considered of interest at this moment in time. We acknowledge that in case of
migrations of one task from one core to another, when the task start running in the
new core, some events of the coherence protocol will be trigger, but we expect the
impact on timing analysis of those to be low.

UNC_CBO_XSNP_RESPONSE.*: for snoop hits and invalidations.

UNC_CBO_CACHE_LOOKUP.*: for cache coherence status: number of times a line
has been found in L3 in modified, exclusive, shared, or invalid on a MESI coherence
protocol.

L2_RQSTS.*: Measures the L2 hit/miss, coherence protocol related misses,
prefetcher misses, etc. (all generations).

3.5 Summary
Overall, the PMCs provided in Intel processors are designed to provide average
performance metrics, but not to identify sources of inter-processor conflicts in shared
resources. They are neither fit to measure worst observed behaviors.

12/28
4000109680/13/NL/HK

4 ARMv7-A

The ARMv7-A architecture [ARMv7-A] provides 6 different 32-bit counters, which
can count any event available. This architecture is used by several different
processors: Cortex-A7, Cortex-A9, Cortex-A15, the big.LITTLE system, and others.

4.1 Performance Monitoring Unit
ARMv7-A provides a Performance Monitoring Unit (PMU) with 6 performance
counters, as shown in Figure 4.

Figure 4 ARMv7 Performance Monitoring Unit block diagram [ARMv7]

The ARMv7-A architecture includes a set of control registers to allow performance
monitoring. The most important of them are:

- PMXEVCNTR, which holds the value of the configured PMC.

- PMSELR, which configures the counter that will be used when counting an event.

- PMXEVTYPER, which selects the event that will increment the selected counter.

- PMCCNTR, which counts the amount of cycles (or cycles/64).

- Counters are set and cleared using the PMCNTENSET and PMCNTENCLR
registers.

13/28
4000109680/13/NL/HK

4.2 PMC classification
The events counted by ARM architectures can be classified in the following types:

- Instruction type: number of retired instructions of a certain type (branch, load,

store, etc).

- Event count: miss-predicted branches, number of exceptions, etc.

- Reference count: number of L1 accesses, bus accesses, data memory accesses,
unaligned accesses to memory, etc.

- Cycle count: CPU cycles, bus cycles.

- Resource-specific event count: L1 write backs, number of L1/L2 refills.

4.3 Cortex-A7 and Cortex-A9
ARM processors have a small set of PMCs available, as they are designed to be
power-efficient and not as focused on performance. In Figure 5 the pipeline of the
Cortex-A7 is shown. It is an in order, dual-issue, 8 to 10 stage pipelines processor.

Figure 5 Block diagram of the ARM Cortex-A7 pipeline[bL]

These processors are widely used in handheld devices which use Java based operating
systems such as Android. For this reason, ARM provides PMCs to measure Java
bytecode performance. In the last years, ARM has been designing CMP chips, but
there is not yet any counter designed to measure the effect on the core caused by other
cores. There is not any counter for worst observed behavior either.

4.4 Cortex-A15
The Cortex-A15 [ARM-A15] is a much more complex processor compared to its
predecessors. It also provides a much larger set of counters compared to Cortex-A7
and Cortex-A9. As can be seen in Figure 6, it features a 15 to 24 stage triple issue
pipeline and supports out-of-order execution. It focuses on performance rather than
power-efficiency.

14/28
4000109680/13/NL/HK

Figure 6 Block diagram of the ARM Cortex-A15 pipeline [bL]

In Figure 7, a block diagram of the Cortex-A15 is presented, showing a 4 core
multicore design. The Performance monitoring unit (one per core) is highlighted.

Figure 7 Block diagram of the ARM Cortex-A15 [ARM-A15]

Cortex-A15 introduces new PMCs which take into account the multi-core hardware
architecture. Several counters are introduced to model how each process use the bus:

15/28
4000109680/13/NL/HK

- BUS_ACCESS_LD: Amount of read bus access.

- BUS_ACCESS_ST: Amount of write bus access.

- BUS_ACCESS_SHARED: Bus access, Normal, Cacheable, Shareable

- BUS_ACCESS_NOT_SHARED: Bus access, not Normal, Cacheable, Shareable

- BUS_ACCESS_NORMAL: Bus access, normal

- BUS_ACCESS_PERIPH: Bus access, peripheral

4.5 big.LITTLE
ARM’s big.LITTLE [bL] is a system designed to combine high performance and low
power consumption. It features an energy-efficient Cortex-A7 processor, and a
powerful Cortex-A15, connected via a CCI-400 Network-on-Chip which provides full
coherency.

Figure 8 Block diagram of the big.LITTLE architecture [bL]

While architecturally both processors support ARMv7-A, micro-architecturally they
differ. Cortex-A7 is an in order, dual-issue, 8 to 10 stage pipelines processor, while
Cortex-A15 supports out-of-order execution, triple issue and 15 to 24 stage pipelines.
This allows big.LITTLE to be very power-efficient when running applications which
are not focused on performance, while being able to sacrifice power-consumption
when performance is required.

Cortex-A15 sacrifices energy-efficiency for performance when needed. The following
table compares energy and performance of both processors for some benchmarks:

Table 4 Performance vs energy efficiency comparative

 Cortex-A15 vs Cortex-A7
Performance

Cortex-A7 vs Cortex-A15
Energy Efficiency

Dhrystone 1.9x 3.5x
FDCT 2.3x 3.8x
IMDCT 3.0x 3.0x
MemCopy L1 1.9x 2.3x
MemCopy L2 1.9x 3.4x

16/28
4000109680/13/NL/HK

4.5.1 Corelink CCI-400 Cache Coherent Interconnect
big.LITTLE connects the cores by using the Corelink CCI-400 [CCI400] network on
chip, which provides coherence, and QoS, and QoS virtual networks. Hardware
managed coherence helps improve power consumption because it reduces memory
accesses and it reduces software coherence mechanisms’ overhead. It complies with
the AMBA AXI and ACE specification. It provides a crossbar interconnect
functionality between masters (2 ACE, 3 ACE-Lite) and slaves (up to three).

In Figure 9, an example architecture is presented, using 2 ACE masters (Cortex-A15
and Cortex-A7), 3 ACE-Lite slaves, and 3 ACE-Lite masters.

Figure 9 Example architecture with 5 masters and 3 slaves connected to the CCI-400

interconnect.[CCI400]

The Corelink CCI-400 interconnect provides also a Quality of Service (QoS)
mechanism to isolate packets in three different groups: low, medium and high
priority. In every arbitration point, the highest priority request is granted access. If
arbitration occurs between two requests of the same priority, a Least Recently Granted
(LRG) algorithm is used for granting access.

The QoS also provides a mechanism for token based virtual networks (VN). Having
VN allows that a packet in a network is able tot reach its destination even when a
transaction in a different VN is blocked. This is very useful to prevent high-bandwidth
transactions from blocking latency-critical tasks from using the interconnect. Up to
four VN can be used.

This interconnect provides a performance monitoring unit (PMU) with four 32 bit
counters which can be configured to count any available event.

Table 5 shows a list of the events that can be counted:

17/28
4000109680/13/NL/HK

Table 5 PMCs provided by the Corelink CCI-400 interconnect.

Event name Type

Read request handshake: any; device transaction; normal, non-shareable
or system-shareable, but not barrier or cache maintenance operation;
inner- or outer-shareable, but not barrier, DVM message or cache
maintenance operation; cache maintenance operation; memory barrier;
synchronization barrier; DVM message, not synchronization; DVM
message, synchronization; and data returned from the snoop instead of
from downstream.

Write request handshake: any; device transaction; normal, non-shareable,
or system-shareable, but not barrier; inner- or outer-shareable, WriteBack
or WriteClean; WriteUnique; WriteLineUnique; and Evict.

RETRY of speculative fetch transaction.

Number of
requests

Read request stall cycle because the transaction tracker is full. Increase
SIx_R_MAX to avoid this stall; RVALIDS is HIGH, RREADYS is LOW;
master interface ID hazard; barrier hazard ; and because slave interface
ID hazard

Write request stall cycle because the transaction tracker is full. Increase
SIx_W_MAX to avoid this stall; barrier hazard; and stalled for a cycle
because the write transaction tracker is full. Increase MIx_W_MAX to
avoid this stall.

Stall cycle because of an address hazard. A read or write invalidation is
stalled because of an outstanding transaction to an overlapping address.

Stall cycles

A read request with a QoS value in the high priority group is stalled for a
cycle because the read transaction queue is full. Increase MIx_R_MAX to
avoid this stall.

A read request with a QoS value in the low priority group is stalled for a
cycle because there are no slots available in the read queue for the low
priority group.

A read request with a QoS value in the medium priority group is stalled
for a cycle because there are no slots available in the read queue for the
medium priority group.

A read request is stalled for a cycle while it was waiting for a QVN token
on VN0.

(There is a counter for each VN, for reads and writes)

QoS stall
cycles

When enabling performance monitoring counting, a maximum duration of the test can
be configured (in clock cycles). Each counter is set up providing an event number and
the master or slave device for which the events will be counted (i.e. events are
counted per core, not globally).

The CCI-400 interconnect provides a good amount of PMCs which are, by the nature
of the component, very related to inter-core communication. They could be used to
easily detect how a certain type of interference affects the behavior of a core. For

18/28
4000109680/13/NL/HK

instance, we could test how an increase of one core’s number of read requests affect
the number of stalls cycles in different core.

Unfortunately, for all the architecture we know there are only 4 available counters, so
measuring interferences would be a process which should be repeated for every type
of interference which we want to measure, and for each different contender. This
would require a very high amount of experimentation.

QoS counters can be very useful to measure interference based on priority groups, as
they implicitly provide information about the cause of the interference:

- If a high priority QoS read request is stalled: it is because the queue for high
priority requests if full. We solve this by increasing the size of the queue, or by
reducing the amount of contenders using the high priority queue.

- If a medium priority QoS read request is stalled: there are high priority requests
using the network, or the request is waiting for another medium priority QoS
request to finish. Because of the LRG arbitration policy, we know the maximum
amount of time the request will be blocked will be at most equal to the number of
other tasks in the medium priority QoS queue.

- If a high priority QoS read request is stalled: there are high or medium priority
requests using the network, or the request is waiting for another low priority QoS
request to finish. Because of the LRG arbitration policy, we know the maximum
amount of time the request will be blocked will be at most equal to the number of
other tasks in the low priority QoS queue.

- If a read or write request is waiting for a QoS VN token, we know that contenders
in the same VN are causing the block.

19/28
4000109680/13/NL/HK

5 Freescale P4080

Freescale P4080 processor which hosts eight e500mc cores. e500mc [E500mc] is a
superscalar processor that can issue two instructions and complete two instructions
per clock cycle. E500mc cores comprise two simple instruction units (SFX0, SFX1), a
multiple-cycle instruction unit (MU), a branch unit (BU), a floating-point unit (FPU),
and a load/store unit (LSU).

Each core has a private L1 instruction and data cache. It also has a private L2 unified
cache. The eight cores are connected through a proprietary CoreNet Fabric coherent
interconnect with two shared 1MB L3 off-chip caches. Each L3 off-chip cache is
connected to a distinct DDR memory controller as depicted in Figure 10.

Figure 10 Block diagram of the Freescale P4080

5.1 Performance Monitors
The performance monitor provides several performance monitor registers (PMRs).
The PMR support offers dedicated core and SoC platform counters[P4080-
progRef][P4080- Debug]. At the core level, the e500mc core allows us to monitor 256
different hardware events, each core being able to monitor 4 different events at a
given time in 4 dedicated 32-bit registers. At the SoC level the P4080 Event
Processing Unit (EPU) allows counting SoC platform events of interest.

5.1.1 Per-core monitors
The performance monitor facility provides the ability to count events and processor
clocks associated with particular operations. For example, cache misses, mispredicted
branches, or the number of cycles an execution unit stalls may be countable events in
a particular processor implementation.

20/28
4000109680/13/NL/HK

Trackable events can be grouped as follows:

- Instruction type: number of completed instructions of a certain type (branch, load,
store, etc).

- Event count: Instructions completed, instructions fetched, Micro-ops decoded, etc.

- Reference count: number of referenced lines in L2, misses in L2, L2 invalidation
in different coherence state, etc.

- Busy resource cycles: number of cycles in which the pipeline is stalled, the FPU
input data stalls, FPU pipeline stall, MMU miss, MMU busy, Load miss with
DTLB full, etc.

- Busy resource times: number of times a stalled resource has been accessed.
Counts the same events as the ones described in Busy resource cycles, but instead
of latency, number of times a stall is detected is counted.

- Cycle count: Processor cycles, FPU divide cycles, etc.

- Threshold exceeding event count: number of times a threshold specified in
number of cycles has been exceeded for a given event, such as L1 miss, ILFB
miss, interrupts, etc.

 Counters are usually per unit such as the fetch unit, the L2 cache, the execution units.
In this category we find events such as the number of fetches, BIU requests, Snoop
requests, Snoop hits, L2cache accesses, hits (data and instr.), etc.

5.1.2 SoC monitors
While we have found information about per-core counters, we have not been able to
find information about the events trackable in the EPU2.

5.1.3 Interesting PMCs
The architecture provides two types of counters that could be useful for
approximating the worst observed case and to detect interference between cores, for
different types of events.

5.1.3.1 Threshold for worst observed behavior

We have found six counters that can be used to approximate worst observed behavior.
This may help model the worst observed behavior, which one of the goals of the
WCMCs. The following two count the number of times a threshold has been exceeded
for DLFB and ILFB load miss cycles.

76: Data line fill buffer load miss cycles

77: Data line fill buffer load miss cycles

Some of the counters may be useful to approximate worst observed behavior for
interrupt handling latency:

78: External input interrupt latency cycles

2 We believe that the documentation about PMCs for the CoreNet network, L3 shared cache and
beyond of the P4080 should be in the “Advanced QorIQ Debug and Performance Monitoring
Reference Manual”. However it seems that this document can be accessed through an NDA.

21/28
4000109680/13/NL/HK

79: Critical input interrupt latency cycles

80: External input interrupt pending latency cycles

81: Critical input interrupt pending latency cycles

Interaction between cores

There is very little support in the architecture to detect inter-core interference. We
have found the following counters:

179: stwcx successes: number of times the stwcx instruction, used for locking
(in conjuntion with the lwarx instruction) has successfully updated the read-
modify-write lock variable.

180: stwcx unsuccessful: number of times the stwcx has failed to update the
lock variable.

This is insufficient to model general case interference, as these counters only take into
account a very particular case of interference: locking.

5.1.4 Summary
Inter-task interferences happen mainly in the interconnect, the L3 and the access to
memory. The impossibility to find the events that can be tracked at that level, does not
allow us determine to which extend SoC-level PMR can tract inter-task interferences.

Freescale PowerPC processors provide a very limited amount of PMCs, most of them
inherited from single core designs. There are very few PMCs that count events
originated outside of the core.

22/28
4000109680/13/NL/HK

6 Aeroflex Gaisler NGMP

The NGMP is a 4 core LEON4 processor used by the ESA. It contains one or more
LEON4 Statistical Unit (L4STAT). The debug driver for L4STAT provides an
interface for reading and configuring the performance counters available in a L4STAT
core.

Figure 11 Block diagram of the NGMP [NGMP]

6.1 PMC infrastructure
Each L4STAT allows configuring any available four events we want to monitor.
These 4 counters are 32-bit wide and reset to 0 on overflow. Each counter has an
associated control register. Both the counters and the control registers are mapped to
APB address space.

6.2 Performance Monitoring Counters

The available events can be divided in three different categories, depending on the
component counting the events:
- Processor events: events generated by the processor, e.g., pipeline or the L1 cache.
- AHB events: events generated by the AHB bus, e.g., AHB busy cycles or number

of read accesses.
- Device specific events: events generated by other devices such as the L2 or the

IOMMU.

The PMCs available in the NGMP are the following:

Table 6 Complete list of PMCs available in the NGMP

Processor events AHB events Device specific events
Instruction cache miss
Instruction MMU TLB miss
Instruction cache hold
Instruction MMU hold

AHB IDLE cycles
AHB BUSY cycles
AHB NON-SEQUENTIAL
transfers

L2 cache hit
L2 cache miss
L2 cache bus access
IOMMU cache lookup

23/28
4000109680/13/NL/HK

Data cache miss
Data MMU TLB miss
Data cache hold
Data MMU hold
Data write buffer hold
Total instruction count
Integer instructions
Floating-point unit instruction
count
Branch prediction miss
Execution time, excluding
debug mode
AHB utilization (per AHB
master)AHB utilization (total)
Integer branches
CALL instructions
Regular type 2 instructions
LOAD and STORE instructions
LOAD instructions
STORE instructions

AHB SEQUENTIAL transfers
AHB read accesses
AHB write accesses
AHB byte accesses
AHB half-word accesses
AHB word accesses
AHB double word accesses
AHB quad word accesses
AHB eight word accesses
AHB waitstates
AHB RETRY responses
AHB SPLIT responses
AHB SPLIT delay
AHB bus locked

IOMMU table walk
IOMMU access error/denied
IOMMU access OK
IOMMU access passthrough
IOMMU cache/TLB miss
IOMMU cache/TLB hit
IOMMU cache/TLB parity
error

The available counters can be classified in the following categories depending on the
type of event they count:
- Busy resource cycles: the resource is unavailable because it is busy. For example

AHB busy cycles
- Idle resource cycles: the resource is not being used. For example AHB idle cycles
- Cycle count: other events counting cycles. For example, CPU cycles.
- Instructions of a given type: Load, store, floating point, integer, total count.
- Event count: number of mispredictions, IOMMU errors,
- Reference count: AHB accesses L1 and L2 accesses and misses
- Maximum Count mode: see section 6.3.

The NGMP does not provide performance counters that would be suitable as WCMC.
The lack of appropriate counters to model inter-core interferences has hindered
research made on the NGMP. For instance, [MBENCH] could have provided more
precise results if the L2 miss counter would be able to count the number of L2 misses
per core, instead of system-wide misses. The PMCs provided are not prepared to
identify the source of interferences either.

6.3 Maximum count mode

It is interesting noting that, if implemented by the core, the PMCs can be configured
in Maximum Count mode. While in this mode, the counter keeps the maximum
amount of time the selected event has been asserted. It is also possible in this mode to
count the maximum amount of time between two event assertions. Maximum count
mode may be very useful as a first step WCMC which keeps track of worst observed
behaviors.
Using Maximum Count Mode it could be possible, for example, to count the longest
burst of AHB busy cycles, or the longest amount of time the bus has been without
having a read access.
Unfortunately, the availability of this counter is implementation dependant and is not
available in the ML-510 board.

24/28 4000109680/13/NL/HK

7 Performance Monitoring Counter classification across processors

In the current document we have classified PMCs in every processor in different categories. In this section we try to find similarities in the PMC
classification across all the analyzed processors. To this end, we are presenting the categorization for each platform in a tabular form.

Intel ARM Freescale IBM NGMP
Busy resource cycles: number of
cycles in which the caches are
busy, a resource is unavailable,
stalled core, etc.

Corelink CCI-400 stall
cycles and QoS stall
cycles

Busy resource cycles:
number of cycles in
which the pipeline is
stalled, the FPU input
data stalls, FPU pipeline
stall, MMU miss, MMU
busy, Load miss with
DTLB full, etc.

Number of cycles a
resource is full (with this
causing the stall of the
processor),

Busy resource types:
AHB busy cycles

Busy resource times:
number of times a stalled
resource has been
accessed. Counts the
same events as the ones
described in Busy
resource cycles, but
instead of latency,
number of times a stall is
detected is counted.

 Number of cycles a
resource is empty. This
can be of a private

Idle resource cycles:
AHB idle cycles

25/28 4000109680/13/NL/HK

resource of a shared
resource. The latter
meaning that none of the
threads that can generate
a request to that resource
have done so.

Cycle count: unhalted core cycles,
unhalted thread cycles, cycles
with outstanding cache misses,
TLB walk duration, etc.

Cycle count: cpu cycles,
bus cycles.

Cycle count: Processor
cycles, FPU divide
cycles, etc.

 Cycle count: cpu cycles

Instructions of a type: number of
retired instructions of a certain
type (branch, load, store, etc).

Instructions of a type:
number of retired
instructions of a certain
type (branch, load, store,
etc).

Instructions of a type:
number of completed
instructions of a certain
type (branch, load, store,
etc).

Number of instructions
of a given type

Instructions of a type:
Load, store, floating
point, integer, total
count.

Event count: microinstructions
issued, branch instructions
executed, number of speculative
instructions retired, number of
miss-predictions, number of cache
misses,

Event count: miss-
predicted branches,
number of exceptions,
etc.

Resource-specific event
count: L1 write backs,
number of L1/L2 refills.

Event count: Instructions
completed, instructions
fetched, Micro-ops
decoded, etc.

Number of events of a
given type (e.g. prefetch
requests sent, …)

Event count: number of
misspredictions,
IOMMU errors,

Reference count: number of
referenced lines in each MESI
state, number of each level of
cache references. (Note that this
can be considered a subtype of the

Reference count: number
of L1 accesses, bus
accesses, data memory
accesses, unaligned
accesses to memory, etc.

Reference count: number
of referenced lines in L2,
misses in L2, L2
invalidation in different
coherence state, etc.

Number of references to
a given resource (e.g. L2
accesses, Dcache
invalidates from L2

Reference count: AHB
accesses
L1 and L2 accesses and
misses

26/28 4000109680/13/NL/HK

above).

CCI-400 number of
requests.

 Quantity of data
transferred

 Stall cycles due to inter-
task conflict

Threshold exceeding event count:
number of times a threshold
specified in number of cycles has
been exceeded for a given event.
The threshold value is configured
by the user.

 Threshold exceeding
event count: number of
times a threshold
specified in number of
cycles has been
exceeded for a given
event. The threshold
value is configured by
the user.

 Only if Maximum Count
Mode is implemented

Number of outstanding requests
per core: cache requests, all
offcore requests, etc. in the
moment of reading the counter.

27/28
4000109680/13/NL/HK

8 Discussion

This document contains a description of several commercial multi-core processors
from IBM, Intel, ARM, Freescale and Aeroflex Gaisler). In particular we focus on the
Performance Monitor Counter infrastructure provided by each of them.

In all the studied architectures, PMCs are used to improve average system
performance by monitoring software execution, characterizing processors behavior,
and/or helping system developers bring up and debug their systems. Few exceptions
of counters exist that help understanding the effect of inter-task interferences. In
particular, only the POWER7, Intel, and the NGMP have been identified to have
PMCs that provide some information about inter-task interferences and maximum
(worst) duration of a stall event (situation).

- POWER7: The only PMC we have seen that provide inter-task interference
knowledge is PMC_CMPLU_STALL_THRD, which provides the number of cycles
a task was stalled due to inter-task interferences in the SMT. Despite that, the
reasons behind this stall is not provided.

- NGMP: Under the Maximum Count Mode (bit 22 of the Counter Control Register
is asserted), then the counter is able to keep the maximum value the counter has
achieved, or the maximum amount of time between two consecutive occurrences
of the same event.

- Intel: Provides the MEM_TRANS_RETIRED.LOAD_LATENCY which can be
configured the amount of times a memory load operations exceeds a user defined
threshold. This allows the user to approximate the worst observed behavior, and to
upper bound it.

However, in general, we observe lack of detailed inter-task interference PMC support.
We note that some information about inter-task interference can be derived in
controlled scenarios. In a first run the program under study is run in isolation
recording PMCs. In a subsequent run the program under study is run again,
maintaining the same input data sets as part of the workload. By subtracting the PMCs
in the first run for those in the second run some inter-task interference information can
be obtained. However, this complicates the analysis and requires analyzing the
program with the same input data in isolation and with other tasks (deployment time),
which is hard to obtain in the general case.

It is also remarkable, that only POWER7 has a CPI stack model designed by chip
vendor (IBM). We consider that CPI stack provides very relevant information for the
timing behaviour of an application, though for the average performance.

28/28
4000109680/13/NL/HK

References

INTEL1 Intel® 64 and IA-32 Architectures Software Developer’s Manual
ARMv7 ARM® Architecture Reference Manual. ARMv7-A and ARMv7-R edition
ARM-A7 Cortex™-A7 MPCore™ Revision: r0p3. Technical Reference Manual
ARM-A9 Cortex™-A9. Revision: r4p1. Technical Reference Manual
ARM-A15 Cortex™-A15 MPCore™ Revision: r3p2. Technical Reference Manual
CCI400 CoreLink™ CCI-400 Cache Coherent Interconnect. Revision: r1p1. Technical

Reference Manual
ARM-A9 Cortex™-A9. Revision: r4p1. Technical Reference Manual
E500mc e500mc Core Reference Manual.

http://cache.freescale.com/files/32bit/doc/ref_manual/E500MCRM.pdf
P4080-progRef EREF 2.0: A Programmer’s Reference Manual for Freescale Power

Architecture® Processors.

 http://cache.freescale.com/files/32bit/doc/ref_manual/EREF_RM.pdf

P4080-Debug On-Chip Debugging of Multicore Systems.
http://2008ftf.ccidnet.com/pdf/PN115.pdf

bL Big.LITTLE Processing with ARM Cortex™-A15 & Cortex-A7
P7-PMCs Comprehensive PMU Event Reference POWER7. Alex Mericas, Brad Elkin,

Venkat Rajeev Indukuru. Release 1.0. August 30, 2011. IBM Systems and
Technology Group

P7-desc B. Sinharoy et al. IBM POWER7 multicore server processor. IBM J. Res.
Dev. , 55:191–219, May 2011

P7-PMC-list https://www.power.org/wp-
content/uploads/2012/09/POWER7_PMU_Detailed_Event_Description.pdf

MBENCH “Multicore OS Benchmark” ESA project number 4000102623
NGMP Quad Core LEON4 SPARC V8 Processor LEON4-NGMP-QUADLION Data

Sheet and User’s Manual

