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1 Introduction 

The main goal of this activity is to understand the philosophy of the Performance-
Monitoring Counter (PMC) implemented in current processors in this activity. We are 
not seeking for a list of all performance-monitoring counters (PMCs) of the analysed 
processors but to understand their philosophy. We are after a set of monitoring 
counters that provide some information about the worst-case behavior of the 
application, so rather than PMCs they should be called WCMCs (worst-case 
monitoring counters). It is also worth noting that we focus on inter-task interference 
effects so our focus is going to be on analyzing existing multicore processors PMC. 

Before starting this activity our intuition was that PMCs in current processors provide 
information about inter-task interferences explicitly. As a first step to confirm this 
intuition, this document analyses the main features of some of the multicore products 
of some of the major chip providers: Intel, ARM, IBM and Freescale. 

We also analyse the PMC support in the Aeroflex Gaisler NGMP, and compare its 
infrastructure and events to the ones available in the other multicore processors. 
Finally, a set of WCMCs are proposed to be added in the NGMP based on the 
knowledge obtained in the analysis of the existing multi-core processors. 
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2 IBM POWER7 

The IBM POWER7 is an 8-core multicore processor in which each core is 4-thread 
SMT. Moreover, every core is divided into two clustered execution pipelines, with 
each one supporting two threads. Threads in the same cluster share more resources 
than threads in different clusters, although threads in different clusters still share some 
on-core resources. Hence, resources are shared a) between threads in different cores, 
b) between all threads running in a core, c) between threads running in a cluster and d) 
between threads running in different clusters.  

The POWER7 core has a dedicated 32-KB 4-way instruction cache and a 32-KB data 
cache. The first level of address translation is formed by an instruction effective-to-
real-address translation (IERAT) and a D-ERAT. The I-ERAT consists of two 32-
entry cache-like structures. The D-ERAT consists of two 64-entry cache-like 
structures. The second level of address translation is comprised of a Segment 
Lookaside Buffer (SLB) with 32 entries per thread and a Translation Lookaside 
Buffer (TLB) with 512 entries. Each core has a 256KB L2 cache and a local 4MB L3 
region that can be shared between all cores forming a 32MB global L3 cache. 

Figure 1 Block diagram of the IBM POWER7 
 

Figure 2 provides a view of the core resources at the core level and how they are 
shared among the threads in the different clusters.  
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Figure 2 Block diagram of the core resources and how they are shared.  [P7-desc]. 
 

Program performance analysis in such a complex core with resources shared among 
different threads is complex.  The POWER7 [P7-PMCs] processor comprises a 
Performance Monitoring Unit (PMU) with six thread-level Performance Counter 
Monitors (PCMs). Four of these are programmable from software to monitor the 
desired (four) events at the same time. There are more than 500 possible performance 
events that can be read. However, performance counters are defined by groups and the 
PMU can only watch events of the same groups at one time. Some counters are per-
thread and others per-core. 

We can regard the ‘type of events’ covered by a particular PMC as follows:  

- Number of cycles a resource is full (with this causing the stall of the processor),  

- Number of cycles a resource is empty. This can be of a private resource of a 
shared resource. The latter meaning that none of the threads that can generate a 
request to that resource have done so. 

- Number of instructions of a given type 

- Number of events of a given type (e.g. prefetch requests sent, …) 

- Number of references to a given resource (e.g. L2 accesses, …) 

- Quantity of data transferred 

- Stall cycles due to inter-task conflict 
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Table 1 Example of PMCs in the POWER7 

PMC name Type/subtype Description 

PM_1PLUS_PPC_DISP  cyc count Cycles at least one Instr. Dispatched 

PM_BR_MPRED Inst. Count Number of Branch Mispredictitions 

PM_CMPLU_STALL_DCACHE_MISS Stall  cycle 
count 

Completion stall caused by D cache miss 

DATA_FROM_L2  data count Data loaded from L2. The processor’s 
Data Cache was reloaded with data  from 
the local chiplet's L2 cache due to a 
demand  load 

PM_GCT_NOSLOT_IC_MISS GCT  Empty cycle 
count 

empty by I cache miss Cycles when the 
Global Completion Table has no  slots 
from this thread because of an Instruction  
Cache miss. 
 

M_L3_MISS L3 Misses  
 

Event count Total L3 references that miss the L3 on a 
per core basis. This event is delivered from 
the L2 domain, so must be scaled 
accordingly (divided by 2) 
 

PM_L2_DC_INV  Event count. 
Inter-task 
interference? 

Dcache invalidates from L2 Total L1 
dcache Invalidates sent by L2 over reload  
bus on a per core basis. The L2 is inclusive 
of L1 icache and L1 dcache, so it has to 
invalidate the caches when it rolls over. 
This event is delivered from the L2 
domain, so must be scaled accordingly  
(divided by 2) 
 

PM_CMPLU_STALL_THRD 
 

stall cycle count 
Inter-task 
conflict 

Completion Stalled due to thread conflict. 
Group ready to complete but it was 
another thread's turn 
 

 

2.1 CPI stack 
An interesting feature of POWER7 is that people from IBM has created a CPI stack of 
the POWER7 based on its PMCs.  The CPI stack relates functional processor stages 
with performance counters to show which CPU functional unit is generating stalls.  

The bar on the left cycles shows the total cycles in which the application was running. 
These cycles are breakdown intro 3 categories in the second column.  



  
 

7/28                                                                                                             4000109680/13/NL/HK 

Figure 3 POWER7 CPI stack model 
The focus is put on the Global Completion Table (GCT or Reorder Buffer, ROB). We 
have the following 3 categories: the cycles in which the application is stalled due to 
any reason Completion_Stall_Cycles; the cycles in which the application is stalled 
because some resources are idle GCT_empty_cycles. And the cycles in which 
instructions are actually being committed Completion_Cycles. 
Completion_Stall_Cycles, in a third breakdown, is split into more detail categories 
that generate the slowdown the Fixed-Point Unit,  The Vector unit, the load store unit, 
the instruction-fetch unit and the stall due to SMT execution. The other components 
are similarly breaked down. 

Metrics in white boxes are derived from a single PMC, while, metrics in gray boxes 
are derived from different PMCs. 
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3 Intel Family 

Intel processors designs focus on maximizing average performance. Usually Intel 
processors feature superscalar execution, complex branch predictors, out of order 
execution, and several levels of cache memories (up to three). PMCs provided by Intel 
focus on providing performance metrics for a single process. To this end, the 
architectures provide counters for analyzing branch predictor effectiveness, cache 
misses due to speculative execution, coherence protocol metrics, etc. 

PMCs provided by Intel are not designed to help identify bottlenecks in resources 
shared between cores, or to quantify the magnitude of interactions in these shared 
resources. A lot of counters provide measurements for time spent accessing a shared 
resource, but they measure average or total accumulated time, and they do not identify 
possible interferences caused by other cores. 

For example, there is a counter called INST_QUEUE_WRITES which counts the 
number of instructions written to the instruction queue. There is another counter 
called INST_QUEUE_WRITE_CYCLES which counts the number of cycles spent 
writing to this same queue. As a result, we are able to obtain the average number of 
cycles it takes to write, but there is not any counter to hold the maximum observed 
latency observed. 

Most counters can be configured to measure events for either from a core or all the 
cores, an agent1 or all agents, and other kinds of specific qualifications (such as 
detection of all events/exclude prefetching events, or counts for different states for the 
coherence protocol used). 

Many shared resources have PMCs that measure their behavior (in terms of number of 
accesses, average latency, number of cache misses, etc), and in some cases and with 
some experimentation, information about inter-processor conflicts can be guessed: for 
instance, we could approximate the amount of L2 cache lines evicted by another 
process comparing the observed number of L2 misses when running in isolation with 
the number of L2 misses when running concurrently with a competing process. 
Unfortunately, this is not possible at deployment time, because the observed events 
are dependent on the specific way tasks have been scheduled. 

Some of the PMCs that measure shared resource behavior which could be used to 
detect interference between cores are described in the following sections. 

3.1 PMC infrastructure 
Intel names the PMC control registers as performance event select registers (shortened 
as IA32_PERFEVTSELx), and the performance monitoring counters are shortened 
as (IA32_PMCx). Intel provides some architectural infrastructure to query about the 
availability of PMCs, but ultimately, the amount of counters available is model 
dependent. The width of the PMCs is also implementation dependent. This 
information can be queried from the CPUID.0AH leaf. 
The architectural infrastructure for PMCs, which comprises 3 different versions of the 
PMC facilities, can be also queried at run time. Each newer version provides upgrades 

                                                 
1 Intel defines “Agent” as a component (core or other kind) which is able to cause a PMC event. 



  
 

9/28                                                                                                             4000109680/13/NL/HK 

on the infrastructure: for example, the 3rd version provides improved support for 
multi-threaded processors. 

3.2 PMC availability in each processor model 
Intel provides a small set of PMCs which are available throughout all their processors. 
These are called Architectural  Performance Monitoring Counters. The rest of the 
PMCs are available for some processors. Intel organizes similar processors in 
generations of processors. Each processor generation has the same PMCs available. 
The following table summarizes which processors belong to each generation: 
 

Table 2 Intel processor generations 
Generation (Codename) Processors 
4th Generation (Haswell) Xeon E3-1200 v3  
3rd Generation (Ivy Bridge) Xeon E3-1200 v2  
2nd Generation (Sandy Bridge) Core i7-2xxx 

Core i5-2xxx 
Core i3-2xxx 
Xeon E3-1200 

1st Generation (Nehalem) Core i7 
Xeon 5500 Series 

(Westmere) Xeon E7-xxxx 
 
The PMCs described in later sections are classified based on availability in one or 
more processor generations. 
 

3.3 PMC classification 
To ease the understanding of Intel’s philosophy on PMCs, we have classified them in 
categories. 
- Instruction type: number of retired instructions of a certain type (branch, load, 

store, etc). 

- Event count: microinstructions issued, branch instructions executed, number of 
speculative instructions retired, number of miss-predictions, number of cache 
misses. 

- Reference count: number of referenced lines in each MESI state, number of each 
level of cache references. 

- Threshold exceeding event count: number of times a threshold specified in 
number of cycles has been exceeded for a given event. The threshold value is 
configured by the user. 

- Number of outstanding requests per core: cache requests, all offcore requests, etc. 
in the moment of reading the counter. 

- Busy resource cycles: number of cycles in which the caches are busy, a resource is 
unavailable, stalled core, etc. 

- Cycle count: unhalted core cycles, unhalted thread cycles, cycles with outstanding 
cache misses, TLB walk duration, etc. 
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- Resource-specific event count: number of lines brought to each cache, data and 
instruction TLB misses for loads or stores, completed page walks per page size, 
number of split memory accesses, number of retired load/store instructions in each 
memory in the hierarchy, etc. 

3.4 Interesting PMCs 
Intel implements a high number of PMCs in their processors, but they are not focused 
on worst observed case, or on interference between cores detection. In this chapter a 
selection of the most relevant PMCs for the purpose of creating a set of WCMC is 
presented. 
 

Table 3 PMCs with possible WCMC potential 
PMC name Description 

LD_BLOCKS.NO_SR Measures split load operations (i.e. data is split 
throughout two different cache lines) blocked 
because all resources for handling them are in 
use. 

L2_LINES_OUT.* Measures L2 clean/dirty line eviction caused by 
demand or by the prefetcher. 

.DEMAND_CLEAN Clean lines evicted by demand 

.DEMAND_DIRTY Dirty lines evicted by demand 

.PF_CLEAN Clean L2 cache lines evicted by the MLC 
prefetcher. 

.PF_DIRTY Dirty L2 cache lines evicted by the MLC 
prefetcher. 

.DIRTY_ALL Dirty L2 cache lines filling the L2. 

LONGEST_LAT_CACHE.* References and misses to the last level of cache, 
originating from each core. 

CYCLE_ACTIVITY.CYCLES
_L2_PENDING 

Number of cycles with pending L2 miss loads 

MEM_LOAD_UOPS_RETIRED
.* 

Number of load micro-operations which were 
served by each memory in the hierarchy. 

MEM_TRANS_RETIRED.LOA
D_LATENCY 

Counts the amount of loads whose latency is 
above a user defined threshold, but only a small 
fraction of the overall loads are randomly 
sampled.  

This counter can help finding an approximate 
worst observed behavior 

MEM_LOAD_RETIRED.OTHE
R_CORE_L2_HIT_HITM 

Load instructions that hit another core’s L2 cache 

Measure positive interaction between cores. 

 

There are available some coherence counters as the one shown next. As control 
(critical) applications are expected to be single-threaded these counters are not 
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considered of interest at this moment in time. We acknowledge that in case of 
migrations of one task from one core to another, when the task start running in the 
new core, some events of the coherence protocol will be trigger, but we expect the 
impact on timing analysis of those to be low. 

UNC_CBO_XSNP_RESPONSE.*:  for snoop hits and invalidations. 

UNC_CBO_CACHE_LOOKUP.*: for cache coherence status: number of times a line 
has been found in L3 in modified, exclusive, shared, or invalid on a MESI coherence 
protocol. 

L2_RQSTS.*: Measures the L2 hit/miss, coherence protocol related misses, 
prefetcher misses, etc. (all generations). 

3.5 Summary 
Overall, the PMCs provided in Intel processors are designed to provide average 
performance metrics, but not to identify sources of inter-processor conflicts in shared 
resources. They are neither fit to measure worst observed behaviors. 
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4 ARMv7-A 

The ARMv7-A architecture [ARMv7-A] provides 6 different 32-bit counters, which 
can count any event available. This architecture is used by several different 
processors: Cortex-A7, Cortex-A9, Cortex-A15, the big.LITTLE system, and others. 

4.1 Performance Monitoring Unit 
ARMv7-A provides a Performance Monitoring Unit (PMU) with 6 performance 
counters, as shown in Figure 4. 

 
Figure 4 ARMv7 Performance Monitoring Unit block diagram [ARMv7] 

 
The ARMv7-A architecture includes a set of control registers to allow performance 
monitoring. The most important of them are: 

- PMXEVCNTR, which holds the value of the configured PMC. 

- PMSELR, which configures the counter that will be used when counting an event. 

- PMXEVTYPER, which selects the event that will increment the selected counter. 

- PMCCNTR, which counts the amount of cycles (or cycles/64). 

- Counters are set and cleared using the PMCNTENSET and PMCNTENCLR 
registers. 
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4.2 PMC classification 
The events counted by ARM architectures can be classified in the following types: 
 
- Instruction type: number of retired instructions of a certain type (branch, load, 

store, etc). 

- Event count: miss-predicted branches, number of exceptions, etc. 

- Reference count: number of L1 accesses, bus accesses, data memory accesses, 
unaligned accesses to memory, etc. 

- Cycle count: CPU cycles, bus cycles. 

- Resource-specific event count: L1 write backs, number of  L1/L2 refills. 

 

4.3 Cortex-A7 and Cortex-A9 
ARM processors have a small set of PMCs available, as they are designed to be 
power-efficient and not as focused on performance. In Figure 5 the pipeline of the 
Cortex-A7 is shown. It is an in order, dual-issue, 8 to 10 stage pipelines processor. 

Figure 5 Block diagram of the ARM Cortex-A7 pipeline[bL] 
 

These processors are widely used in handheld devices which use Java based operating 
systems such as Android. For this reason, ARM provides PMCs to measure Java 
bytecode performance. In the last years, ARM has been designing CMP chips, but 
there is not yet any counter designed to measure the effect on the core caused by other 
cores. There is not any counter for worst observed behavior either. 

 

4.4 Cortex-A15 
The Cortex-A15 [ARM-A15] is a much more complex processor compared to its 
predecessors. It also provides a much larger set of counters compared to Cortex-A7 
and Cortex-A9. As can be seen in Figure 6, it features a 15 to 24 stage triple issue 
pipeline and supports out-of-order execution. It focuses on performance rather than 
power-efficiency. 
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Figure 6 Block diagram of the ARM Cortex-A15 pipeline [bL] 
 

In Figure 7, a block diagram of the Cortex-A15 is presented, showing a 4 core 
multicore design. The Performance monitoring unit (one per core) is highlighted. 

 
Figure 7 Block diagram of the ARM Cortex-A15 [ARM-A15] 

 

Cortex-A15 introduces new PMCs which take into account the multi-core hardware 
architecture. Several counters are introduced to model how each process use the bus: 
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- BUS_ACCESS_LD: Amount of read bus access. 

- BUS_ACCESS_ST: Amount of write bus access. 

- BUS_ACCESS_SHARED: Bus access, Normal, Cacheable, Shareable 

- BUS_ACCESS_NOT_SHARED: Bus access, not Normal, Cacheable, Shareable 

- BUS_ACCESS_NORMAL: Bus access, normal 

- BUS_ACCESS_PERIPH: Bus access, peripheral 

 

4.5 big.LITTLE 
ARM’s big.LITTLE [bL] is a system designed to combine high performance and low 
power consumption. It features an energy-efficient Cortex-A7 processor, and a 
powerful Cortex-A15, connected via a CCI-400 Network-on-Chip which provides full 
coherency. 

 
Figure 8 Block diagram of the big.LITTLE architecture [bL] 

 

While architecturally both processors support ARMv7-A, micro-architecturally they 
differ. Cortex-A7 is an in order, dual-issue, 8 to 10 stage pipelines processor, while 
Cortex-A15 supports out-of-order execution, triple issue and 15 to 24 stage pipelines. 
This allows big.LITTLE to be very power-efficient when running applications which 
are not focused on performance, while being able to sacrifice power-consumption 
when performance is required. 

Cortex-A15 sacrifices energy-efficiency for performance when needed. The following 
table compares energy and performance of both processors for some benchmarks: 

Table 4 Performance vs energy efficiency comparative 

 Cortex-A15 vs Cortex-A7 
Performance 

Cortex-A7 vs Cortex-A15  
Energy Efficiency 

Dhrystone  1.9x  3.5x  
FDCT  2.3x  3.8x  
IMDCT  3.0x  3.0x  
MemCopy L1  1.9x  2.3x  
MemCopy L2  1.9x  3.4x  
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4.5.1 Corelink CCI-400 Cache Coherent Interconnect 
big.LITTLE connects the cores by using the Corelink CCI-400 [CCI400] network on 
chip, which provides coherence, and QoS, and QoS virtual networks. Hardware 
managed coherence helps improve power consumption because it reduces memory 
accesses and it reduces software coherence mechanisms’ overhead. It complies with 
the AMBA AXI and ACE specification. It provides a crossbar interconnect 
functionality between masters (2 ACE, 3 ACE-Lite) and slaves (up to three). 

In Figure 9, an example architecture is presented, using 2 ACE masters (Cortex-A15 
and Cortex-A7), 3 ACE-Lite slaves, and 3 ACE-Lite masters. 

 
Figure 9 Example architecture with 5 masters and 3 slaves connected to the CCI-400 

interconnect.[CCI400] 
 

The Corelink CCI-400 interconnect provides also a Quality of Service (QoS) 
mechanism to isolate packets in three different groups: low, medium and high 
priority. In every arbitration point, the highest priority request is granted access. If 
arbitration occurs between two requests of the same priority, a Least Recently Granted 
(LRG) algorithm is used for granting access. 

The QoS also provides a mechanism for token based virtual networks (VN). Having 
VN allows that a packet in a network is able tot reach its destination even when a 
transaction in a different VN is blocked. This is very useful to prevent high-bandwidth 
transactions from blocking latency-critical tasks from using the interconnect. Up to 
four VN can be used. 

This interconnect provides a performance monitoring unit (PMU) with four 32 bit 
counters which can be configured to count any available event. 

Table 5 shows a list of the events that can be counted: 
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Table 5 PMCs provided by the Corelink CCI-400 interconnect. 

Event name Type 

Read request handshake: any; device transaction; normal, non-shareable 
or system-shareable, but not barrier or cache  maintenance operation; 
inner- or outer-shareable, but not barrier, DVM message or cache 
maintenance operation; cache maintenance operation; memory barrier; 
synchronization barrier; DVM message, not synchronization; DVM 
message, synchronization; and data returned from the snoop instead of 
from downstream. 

Write request handshake: any; device transaction; normal, non-shareable, 
or system-shareable, but not barrier; inner- or outer-shareable, WriteBack 
or WriteClean; WriteUnique; WriteLineUnique; and  Evict. 

RETRY of speculative fetch transaction. 

Number of 
requests 

Read request stall cycle because the transaction tracker is full. Increase 
SIx_R_MAX to avoid this stall; RVALIDS is HIGH, RREADYS is LOW; 
master interface ID hazard; barrier hazard ; and because slave interface 
ID hazard 

Write request stall cycle because the transaction tracker is full. Increase 
SIx_W_MAX to avoid this stall; barrier hazard;  and  stalled for a cycle 
because the write transaction tracker is full. Increase MIx_W_MAX to 
avoid this stall. 

Stall cycle because of an address hazard. A read or write invalidation is 
stalled because of an outstanding transaction to an overlapping address. 

Stall cycles 

A read request with a QoS value in the high priority group is stalled for a 
cycle because the read transaction queue is full. Increase MIx_R_MAX to 
avoid this stall. 

A read request with a QoS value in the low priority group is stalled for a 
cycle because there are no slots available in the read queue for the low 
priority group. 

A read request with a QoS value in the medium priority group is stalled 
for a cycle because there are no slots available in the read queue for the 
medium priority group. 

A read request is stalled for a cycle while it was waiting for a QVN token 
on VN0. 

(There is a counter for each VN, for reads and writes) 

QoS stall 
cycles 

 

When enabling performance monitoring counting, a maximum duration of the test can 
be configured (in clock cycles). Each counter is set up providing an event number and 
the master or slave device for which the events will be counted (i.e. events are 
counted per core, not globally). 

The CCI-400 interconnect provides a good amount of PMCs which are, by the nature 
of the component, very related to inter-core communication. They could be used to 
easily detect how a certain type of interference affects the behavior of a core. For 
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instance, we could test how an increase of one core’s number of read requests affect 
the number of stalls cycles in different core. 

Unfortunately, for all the architecture we know there are only 4 available counters, so 
measuring interferences would be a process which should be repeated for every type 
of interference which we want to measure, and for each different contender. This 
would require a very high amount of experimentation. 

QoS counters can be very useful to measure interference based on priority groups, as 
they implicitly provide information about the cause of the interference: 

- If a high priority QoS read request is stalled: it is because the queue for high 
priority requests if full. We solve this by increasing the size of the queue, or by 
reducing the amount of contenders using the high priority queue. 

- If a medium priority QoS read request is stalled: there are high priority requests 
using the network, or the request is waiting for another medium priority QoS 
request to finish. Because of the LRG arbitration policy, we know the maximum 
amount of time the request will be blocked will be at most equal to the number of 
other tasks in the medium priority QoS queue. 

- If a high priority QoS read request is stalled: there are high or medium priority 
requests using the network, or the request is waiting for another low priority QoS 
request to finish. Because of the LRG arbitration policy, we know the maximum 
amount of time the request will be blocked will be at most equal to the number of 
other tasks in the low priority QoS queue. 

- If a read or write request is waiting for a QoS VN token, we know that contenders 
in the same VN are causing the block. 
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5 Freescale P4080 

Freescale P4080 processor which hosts eight e500mc cores. e500mc [E500mc] is a 
superscalar processor that can issue two instructions and complete two instructions 
per clock cycle. E500mc cores comprise two simple instruction units (SFX0, SFX1), a 
multiple-cycle instruction unit (MU), a branch unit (BU), a floating-point unit (FPU), 
and a load/store unit (LSU).  

Each core has a private L1 instruction and data cache. It also has a private L2 unified 
cache. The eight cores are connected through a proprietary CoreNet Fabric coherent 
interconnect with two shared 1MB L3 off-chip caches. Each L3 off-chip cache is 
connected to a distinct DDR memory controller as depicted in Figure 10. 

Figure 10 Block diagram of the Freescale P4080 
 

5.1 Performance Monitors 
The performance monitor provides several performance monitor registers (PMRs). 
The PMR support offers dedicated core and SoC platform counters[P4080-
progRef][P4080- Debug]. At the core level, the e500mc core allows us to monitor 256 
different hardware events, each core being able to monitor 4 different events at a 
given time in 4 dedicated 32-bit registers. At the SoC level the P4080 Event 
Processing Unit (EPU) allows counting SoC platform events of interest.  

5.1.1 Per-core monitors 
The performance monitor facility provides the ability to count events and processor 
clocks associated with particular operations. For example, cache misses, mispredicted 
branches, or the number of cycles an execution unit stalls may be countable events in 
a particular processor implementation.  
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Trackable events can be grouped as follows: 

- Instruction type: number of completed instructions of a certain type (branch, load, 
store, etc). 

- Event count: Instructions completed, instructions fetched, Micro-ops decoded, etc. 

- Reference count: number of referenced lines in L2, misses in L2, L2 invalidation 
in different coherence state, etc.  

- Busy resource cycles: number of cycles in which the pipeline is stalled, the FPU 
input data stalls, FPU pipeline stall, MMU miss, MMU busy, Load miss with 
DTLB full, etc. 

- Busy resource times: number of times a stalled resource has been accessed. 
Counts the same events as the ones described in Busy resource cycles, but instead 
of latency, number of times a stall is detected is counted. 

- Cycle count: Processor cycles, FPU divide cycles, etc. 

- Threshold exceeding event count: number of times a threshold specified in 
number of cycles has been exceeded for a given event, such as L1 miss, ILFB 
miss, interrupts, etc. 

 Counters are usually per unit such as the fetch unit, the L2 cache, the execution units. 
In this category we find events such as the number of fetches, BIU requests, Snoop 
requests, Snoop hits, L2cache accesses, hits (data and instr.), etc. 

 

5.1.2 SoC monitors 
While we have found information about per-core counters, we have not been able to 
find information about the events trackable in the EPU2. 

5.1.3 Interesting PMCs 
The architecture provides two types of counters that could be useful for 
approximating the worst observed case and to detect interference between cores, for 
different types of events.  

5.1.3.1 Threshold for worst observed behavior 

We have found six counters that can be used to approximate worst observed behavior. 
This may help model the worst observed behavior, which one of the goals of the 
WCMCs. The following two count the number of times a threshold has been exceeded 
for DLFB and ILFB load miss cycles. 

76: Data line fill buffer load miss cycles 

77: Data line fill buffer load miss cycles 

Some of the counters may be useful to approximate worst observed behavior for 
interrupt handling latency: 

78: External input interrupt latency cycles 

                                                 
2 We believe that the documentation about PMCs for the CoreNet network, L3 shared cache and 
beyond of the P4080 should be in the “Advanced QorIQ Debug and Performance Monitoring 
Reference Manual”. However it seems that this document can be accessed through an NDA. 
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79: Critical input interrupt latency cycles 

80: External input interrupt pending latency cycles 

81: Critical input interrupt pending latency cycles 

Interaction between cores 

There is very little support in the architecture to detect inter-core interference. We 
have found the following counters: 

179: stwcx successes: number of times the stwcx instruction, used for locking 
(in conjuntion with the lwarx instruction) has successfully updated the read-
modify-write lock variable. 

180: stwcx unsuccessful: number of times the stwcx has failed to update the 
lock variable. 

This is insufficient to model general case interference, as these counters only take into 
account a very particular case of interference: locking. 

5.1.4 Summary 
Inter-task interferences happen mainly in the interconnect, the L3 and the access to 
memory. The impossibility to find the events that can be tracked at that level, does not 
allow us determine to which extend SoC-level PMR can tract inter-task interferences. 

Freescale PowerPC processors provide a very limited amount of PMCs, most of them 
inherited from single core designs. There are very few PMCs that count events 
originated outside of the core. 
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6 Aeroflex Gaisler NGMP 

The NGMP is a 4 core LEON4 processor used by the ESA. It contains one or more 
LEON4 Statistical Unit (L4STAT). The debug driver for L4STAT provides an 
interface for reading and configuring the performance counters available in a L4STAT 
core. 

Figure 11 Block diagram of the NGMP [NGMP] 
 

6.1 PMC infrastructure  
Each L4STAT allows configuring any available four events we want to monitor. 
These 4 counters are 32-bit wide and reset to 0 on overflow. Each counter has an 
associated control register. Both the counters and the control registers are mapped to 
APB address space. 

6.2 Performance Monitoring Counters 

The available events can be divided in three different categories, depending on the 
component counting the events: 
- Processor events: events generated by the processor, e.g., pipeline or the L1 cache. 
- AHB events: events generated by the AHB bus, e.g., AHB busy cycles or number 

of read accesses. 
- Device specific events: events generated by other devices such as the L2 or the 

IOMMU. 
 

The PMCs available in the NGMP are the following: 
 

Table 6 Complete list of PMCs available in the NGMP 

Processor events AHB events Device specific events 
Instruction cache miss 
Instruction MMU TLB miss 
Instruction cache hold 
Instruction MMU hold 

AHB IDLE cycles 
AHB BUSY cycles 
AHB NON-SEQUENTIAL 
transfers 

L2 cache hit 
L2 cache miss 
L2 cache bus access 
IOMMU cache lookup 
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Data cache miss 
Data MMU TLB miss 
Data cache hold 
Data MMU hold 
Data write buffer hold 
Total instruction count 
Integer instructions 
Floating-point unit instruction 
count 
Branch prediction miss 
Execution time, excluding 
debug mode 
AHB utilization (per AHB 
master)AHB utilization (total) 
Integer branches 
CALL instructions 
Regular type 2 instructions 
LOAD and STORE instructions 
LOAD instructions 
STORE instructions 

AHB SEQUENTIAL transfers 
AHB read accesses 
AHB write accesses 
AHB byte accesses 
AHB half-word accesses 
AHB word accesses 
AHB double word accesses 
AHB quad word accesses 
AHB eight word accesses 
AHB waitstates 
AHB RETRY responses 
AHB SPLIT responses 
AHB SPLIT delay 
AHB bus locked 
 

IOMMU table walk 
IOMMU access error/denied 
IOMMU access OK 
IOMMU access passthrough 
IOMMU cache/TLB miss 
IOMMU cache/TLB hit 
IOMMU cache/TLB parity 
error 
 

 
The available counters can be classified in the following categories depending on the 
type of event they count: 
- Busy resource cycles: the resource is unavailable because it is busy. For example 

AHB busy cycles 
- Idle resource cycles: the resource is not being used. For example AHB idle cycles 
- Cycle count: other events counting cycles. For example, CPU cycles. 
- Instructions of a given type: Load, store, floating point, integer, total count. 
- Event count: number of mispredictions, IOMMU errors, 
- Reference count: AHB accesses L1 and L2 accesses and misses 
- Maximum Count mode: see section 6.3. 
 
The NGMP does not provide performance counters that would be suitable as WCMC. 
The lack of appropriate counters to model inter-core interferences has hindered 
research made on the NGMP. For instance, [MBENCH] could have provided more 
precise results if the L2 miss counter would be able to count the number of L2 misses 
per core, instead of system-wide misses. The PMCs provided are not prepared to 
identify the source of interferences either. 
 

6.3 Maximum count mode 

It is interesting noting that, if implemented by the core, the PMCs can be configured 
in Maximum Count mode. While in this mode, the counter keeps the maximum 
amount of time the selected event has been asserted. It is also possible in this mode to 
count the maximum amount of time between two event assertions. Maximum count 
mode may be very useful as a first step WCMC which keeps track of worst observed 
behaviors. 
Using Maximum Count Mode it could be possible, for example, to count the longest 
burst of AHB busy cycles, or the longest amount of time the bus has been without 
having a read access. 
Unfortunately, the availability of this counter is implementation dependant and is not 
available in the ML-510 board. 
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7 Performance Monitoring Counter classification across processors 

In the current document we have classified PMCs in every processor in different categories. In this section we try to find similarities in the PMC 
classification across all the analyzed processors. To this end, we are presenting the categorization for each platform in a tabular form. 
 

Intel ARM Freescale IBM NGMP 
Busy resource cycles: number of 
cycles in which the caches are 
busy, a resource is unavailable, 
stalled core, etc. 

 

Corelink CCI-400 stall 
cycles and QoS stall 
cycles 

Busy resource cycles: 
number of cycles in 
which the pipeline is 
stalled, the FPU input 
data stalls, FPU pipeline 
stall, MMU miss, MMU 
busy, Load miss with 
DTLB full, etc. 

Number of cycles a 
resource is full (with this 
causing the stall of the 
processor), 

Busy resource types: 
AHB busy cycles 

Busy resource times: 
number of times a stalled 
resource has been 
accessed. Counts the 
same events as the ones 
described in Busy 
resource cycles, but 
instead of latency, 
number of times a stall is 
detected is counted. 

   Number of cycles a 
resource is empty. This 
can be of a private 

Idle resource cycles: 
AHB idle cycles 
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resource of a shared 
resource. The latter 
meaning that none of the 
threads that can generate 
a request to that resource 
have done so. 

Cycle count: unhalted core cycles, 
unhalted thread cycles, cycles 
with outstanding cache misses, 
TLB walk duration, etc. 

Cycle count: cpu cycles, 
bus cycles. 

Cycle count: Processor 
cycles, FPU divide 
cycles, etc. 

 Cycle count: cpu cycles 

Instructions of a type: number of 
retired instructions of a certain 
type (branch, load, store, etc). 

Instructions of a type: 
number of retired 
instructions of a certain 
type (branch, load, store, 
etc). 

Instructions of a type: 
number of completed 
instructions of a certain 
type (branch, load, store, 
etc). 

Number of instructions 
of a given type 

Instructions of a type: 
Load, store, floating 
point, integer, total 
count. 

Event count: microinstructions 
issued, branch instructions 
executed, number of speculative 
instructions retired, number of 
miss-predictions, number of cache 
misses, 

 

Event count: miss-
predicted branches, 
number of exceptions, 
etc. 

Resource-specific event 
count: L1 write backs, 
number of  L1/L2 refills. 

Event count: Instructions 
completed, instructions 
fetched, Micro-ops 
decoded, etc. 

Number of events of a 
given type (e.g. prefetch 
requests sent, …) 

Event count: number of 
misspredictions, 
IOMMU errors, 

Reference count: number of 
referenced lines in each MESI 
state, number of each level of 
cache references. (Note that this 
can be considered a subtype of the 

Reference count: number 
of L1 accesses, bus 
accesses, data memory 
accesses, unaligned 
accesses to memory, etc. 

Reference count: number 
of referenced lines in L2, 
misses in L2, L2 
invalidation in different 
coherence state, etc. 

Number of references to 
a given resource (e.g. L2 
accesses, Dcache 
invalidates from L2 

 

Reference count: AHB 
accesses 
L1 and L2 accesses and 
misses 
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above). 

 

CCI-400 number of 
requests. 

   Quantity of data 
transferred 

 

   Stall cycles due to inter-
task conflict 

 

Threshold exceeding event count: 
number of times a threshold 
specified in number of cycles has 
been exceeded for a given event. 
The threshold value is configured 
by the user. 

 Threshold exceeding 
event count: number of 
times a threshold 
specified in number of 
cycles has been 
exceeded for a given 
event. The threshold 
value is configured by 
the user.  

 Only if Maximum Count 
Mode is implemented 

Number of outstanding requests 
per core: cache requests, all 
offcore requests, etc. in the 
moment of reading the counter. 
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8 Discussion 

This document contains a description of several commercial multi-core processors 
from IBM, Intel, ARM, Freescale and Aeroflex Gaisler). In particular we focus on the 
Performance Monitor Counter infrastructure provided by each of them. 

In all the studied architectures, PMCs are used to improve average system 
performance by monitoring software execution, characterizing processors behavior, 
and/or helping system developers bring up and debug their systems.  Few exceptions 
of counters exist that help understanding the effect of inter-task interferences. In 
particular, only the POWER7, Intel, and the NGMP have been identified to have 
PMCs that provide some information about inter-task interferences and maximum 
(worst) duration of a stall event (situation). 

- POWER7: The only PMC we have seen that provide inter-task interference 
knowledge is PMC_CMPLU_STALL_THRD, which provides the number of cycles 
a task was stalled due to inter-task interferences in the SMT. Despite that, the 
reasons behind this stall is not provided. 

- NGMP: Under the Maximum Count Mode (bit 22 of the Counter Control Register 
is asserted), then the counter is able to keep the maximum value the counter has 
achieved, or the maximum amount of time between two consecutive occurrences 
of the same event. 

- Intel: Provides the MEM_TRANS_RETIRED.LOAD_LATENCY which can be 
configured the amount of times a memory load operations exceeds a user defined 
threshold. This allows the user to approximate the worst observed behavior, and to 
upper bound it. 

However, in general, we observe lack of detailed inter-task interference PMC support. 
We note that some information about inter-task interference can be derived in 
controlled scenarios. In a first run the program under study is run in isolation 
recording PMCs. In a subsequent run the program under study is run again, 
maintaining the same input data sets as part of the workload. By subtracting the PMCs 
in the first run for those in the second run some inter-task interference information can 
be obtained. However, this complicates the analysis and requires analyzing the 
program with the same input data in isolation and with other tasks (deployment time), 
which is hard to obtain in the general case. 

It is also remarkable, that only POWER7 has a CPI stack model designed by chip 
vendor (IBM). We consider that CPI stack provides very relevant information for the 
timing behaviour of an application, though for the average performance. 
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