

RECONFIGURABILITY using FPGAs

A. Fernández León SEFUW 2012 - ESTEC 07-Nov-2012

RECONFIGURABILITY: what do we mean?

RECONFIGURABILITY = Capability to MODIFY the system in a controlled manner

Reconfigurable FPGAs (SRAM or FLASH) have this capability

- What are we using it for today?
- What could it be used for?
- What are we investigating?

Many potential applications and ways to do it !!

How **to classify** and **to name** the different applications and ways to do space systems modifications by reconfiguring FPGAs? We need to speak the same language to understand each other.

RECONFIGURING FPGAs: many applications and ways. Terminology

RECONFIGURATION => CONTROLLED MODIFICATIONS

Reacting to **expected** and/or **unexpected** errors, faults, changes, happening **inside** and/or **outside** the FPGA

FPGA reconfiguration can be used for:

- 1. Correcting unexpected problems inside the FPGA
- 2. Adapting unexpected problems outside
- 3. Transforming expected system (outside or inside) needs
- 4. Validating (prototyping for design debugging and analysis)

Algorithms upgrade

Correcting (internal faults)

Persistent Rad Effects

Wear-out

Silicon Defects

Design errors

Adapting

(unexpected external changes)

External system faults

New user demands = system specifications

System poor definition = late spec changes

Transforming

(expected external or internal changes)

Swapping functions to save real state or optimise internal performance

Validating

(testing design behaviour)

HW test of future ASICs or FPGAs during design phase

Fault injection / emulation / analysis

Correcting (internal faults)

Persistent Rad Effects

Wear-out

Silicon Defects

Design errors

Adapting

(unexpected external changes)

External system faults

New user demands = system specifications

System poor definition = late spec changes

Transforming

(expected external or internal changes)

Validating

(testing design behaviour)

Swapping functions to save real state or optimise performance

HW test of future ASICs or FPGAs during design phase

Fault injection / emulation / analysis

On-Ground

Correcting

(internal faults)

Persistent Rad Effects

Wear-out

Silicon Defects

Design errors

External system faults

New user demands = system specifications

System poor definition = late spec changes

Adapting

(unexpected external changes)

Transforming

(expected external or internal changes)

Validating

(testing design behaviour)

Swapping functions to save real state or optimise performance

HW test of future ASICs or FPGAs during design phase

Fault injection / emulation / analysis

On-Board

RECONFIGURABLE FPGAS: TODAY

RECONFIGURABLE FPGAs: TODAY

Correcting

(internal faults)

Persistent Rad Effects

Wear-out

Silicon Defects

Design errors

On-Board

Data and Instructions "reconfigurati ons" (or multiple pages) of onboard computer

memories

Adapting

(unexpected external changes)

External system faults

New user demands = system specifications

System poor definition = late spec changes

Transforming

(expected external or internal changes)

Swapping functions to save real state or optimise performance

Validating

(testing design behaviour)

HW test of future ASICs or FPGAs during design phase

Fault injection / emulation / analysis

On-Ground

RECONFIGURABLE FPGAS: TODAY R&D

Correcting

(internal faults)

Persistent Rad Effects

Wear-out

Silicon Defects

Design errors

On-Board

Adapting

(unexpected external changes)

External system faults

New user demands = system specifications

System poor definition = late spec changes

Transforming

(expected external or internal changes)

Swapping functions to save real state or optimise performance

Validating

(testing design behaviour)

HW test of future ASICs or FPGAs during design phase

Fault injection / emulation / analysis

On-Ground

RECONFIGURING FPGAs: HOW, WHAT STYLE? CESA

RECONFIGURABLE FPGAs: what next?

Persistent Rad Effects

External system faults

New user demands =

system specifications

late spec changes

System poor definition =

Wear-out

Silicon Defects

Design errors

Adapting

(unexpected external changes)

Swapping functions to save

Transforming (expected external or internal changes)

Validating

(testing design behaviour)

real state or optimise internal performance

HW test of future ASICs or FPGAs during design phase

Fault injection / emulation analysis

self-healing

SW-definedradio

Optimise

performance

Algorithms upgrade

