

Mentor's FPGA Implementation Flow for Atmel

FPGA Synthesis & Equivalence Checking

November 2012 Olivier Takeznount Applications Engineer Europe

Precision Synthesis for FPGA Implementation

Design

- Leading mixed language support
- Precise-IP Platform
- Synthesize & Optimize
 - Out-of-the-box Quality of Results
- Achieve Design Closure
 - Award-winning analysis & debug
- Atmel-Specific Options & Enhancements

Formal Verification using Equivalence Checking

Leading Mixed Language Support

- Verilog, SystemVerilog, VHDL 2008, EDIF
- Support for mixed language design input
- Synopsys Design Constraint (SDC) Support
 - ASIC Industry standard for timing constraint

Precise-IP[™], IP Encryption: Vendor Independent IP Platform

- Precise-IP
 - Vendor Independent IP Platform
 - Expanded library of configurable cores
 - Re-target IP to different FPGAs
 - Out-of-the-box Quality of Results
 - Over 70 certified cores from leading IP vendors
- Precise-Encrypt
 - Vendor independent encryption
 - Synthesize encrypted IP (IEEE P1735 draft)
 - Share IP securely with teams, vendors, partners

Precise-IP[™] Platform

© 2010 Mentor Graphics Corp. Company Confidential **www.mentor.com**

IP

Out-of-the-Box Quality of Results (RTL Synthesis)

- Advanced technology-independent inference
 - Memories, DSP elements, Operators, Shifters
- Advanced optimizations
 - Retiming
 - Data-Path Optimization
 - Resource sharing
 - Timing Driven Optimization

Mentor's Integrated, FPGA Vendor Independent Tool Flow

Atmel-specific options in 2010a update 2

- Default behavior is that Precision maps to LPM macros and doesn't map to FGEN2 cells. So, if that is the behavior desired by the user, then nothing should be done.
- Precision can map to FGEN2 cells by using the following command:
 - setup_design -var at280k_new_flow=true
 - The default value in 2012a update2 is false
- To disable inference of LPM macros and map operators to logic resources, the following 2 commands need to be specified:
 - setup_design -var map_atmel_lpm_to_tech_cell=true
 - setup_design -var at280k_new_flow_resolve=true
 - The default values for these variables in 2010a update 2 is false

Note:

 setup_design -var at280k_new_flow_without_lpm=true is a superset variable that enables the 2 variables above and enables mapping to FGEN2 cells

Atmel-specific options in 2010a update 3

- All the options above are merged into one command:
 - setup_design -atmel_map_options {}
- The curly brackets are required as the values that can be provided to the option could be one or more of the following 4 pre-defined values:
 - Ipm: map operators to LPMs
 - no_lpm: disable mapping operators to LPMs and map them to logic cells
 - single_output_macros: map logic to FGEN1* primitives
 - dual_output_macros: map logic to FGEN1* and FGEN2* primitives
- Also, note that multiple values can be specified using the space character as a separator like:
 - setup_design atmel_map_options {lpm dual_output_macros} or
 - setup_design -atmel_map_options {no_lpm single_output_macros}

Atmel-specific options in 2010a update 3 (cont'd)

- The default behavior in 2010a update 3 is maintained from 2010a update 2. For example:
 - setup_design -atmel_map_options {lpm single_output_macros}
- If the user specifies 2 conflicting options in the list, then the last one prevails. For example:
 - setup_design –atmel_map_options {lpm no_lpm single_output_macros} => in this case, no_lpm prevails along with single_output_macros

2010a update 3 Enhancements

- Write functional VHDL simulation netlist for FGEN2 instances
- Inference of LPM_MUX
- Inference of carry select adder LPM (LPM_ADD_SUB_CS) for adders with 24 bits or more
- Inference of RSBUF reset buffer instead of IBUF
- Fix LPM_ROM cut-off to address width of 10 instead of 9
- Enable register retiming for ATF280E
- FA and MULT introduction

What's New in 2012b¹

- New Family/Device Support
 - ATFS450 (All ATF280E options are available for ATFS450)
 - ATF280E part/package enhancement support

Enhanced FGEN Mapping

- Mapping of FGEN*R, FGEN*RT
- Improves area QoR

Enhanced MGEN Mapping

- Functional extraction of AND-gate patterns
- Mapping of MGEN*R, MGEN*RT
- Improves area QoR

Enable register retiming for ATF280F & ATFS450

What's New in 2012b (continued)

- Inference of LPM_MUX
- Clock buffer inference for fanout > 1
- IOB registers not used by default
- Area report enhancement for FGEN*R, MGEN*R & MULT
- Write functional VHDL post-synthesis simulation netlist
 Currently assign statements are used => will be replaced with appropriate technology-specific primitives

What's New in 2012b (continued)

Hierarchy Flattening

- ON by default for improved P&R flow
- Use the following new option to turn it OFF:
 - setup_design -atmel_map_options {no_flatten_hierarchy}

Consolidate & Simplify Atmel Mapping Options

- Specify mapping options using only the following command:
 - setup_design -atmel_map_options {}
- Precision will give an error message when old variable options are specified using the following command:
 - setup_design -var <option_name>

Overview of Atmel-specific options in 2012b

- Specify mapping options using the following command:
 - setup_design -atmel_map_options {}
- The curly brackets are required as the values that can be provided to the option could be one or more of the following 5 values:
 - Ipm: map operators to LPMs
 - no_lpm: disable mapping operators to LPMs and map them to logic cells
 - single_output_macros: map logic to FGEN1* primitives
 - dual_output_macros: map logic to FGEN1*, FGEN2* and MGEN* primitives
 - no_flatten_hierarchy: does not flatten user hierarchy, uses auto mode
- Multiple values can be specified using the space character as a separator:
 - setup_design –atmel_map_options {lpm dual_output_macros} or
 - setup_design -atmel_map_options {no_lpm single_output_macros}

Formal Verification Using Equivalence Checking

- Why use Logic Equivalence Check ?
- Where does Equivalence Check fit in ?
- Inputs/Outputs & Results
- FPGA Support

Summary

- LEC provides higher functional coverage in much faster time
- LEC static analysis proves that all functions of the reference design are implemented in the netlist
 - Detects functional differences
 - Detects unused and extra logic
 - Detects floating and shorted nets
- Static Timing reports can confirm correct netlist timing
- LEC + Static Timing meet the objectives of Gate simulation
- LEC transfers RTL functional coverage to a netlist

Where does Equivalence Check fit in ?

FPGA Verification Flow Synthesis tools **RTL Design tools Routing + Timing** closure tools Capture / Tracking RTL LEC LEC Place & **Synthesis** Simulate Prototype Route & **AVM** netlist **STA** Property Ck netlist Pass Gate Increase Simulate Coverage LEC checks that the (tool set + the user) achieves the correct result

Inputs/Outputs

LEC inputs

- HDL or netlist format
 - Must be synthesizable to logic
 - Verilog 1995/2001, VHDL 87/93, SystemVerilog
 - Cannot be a protected IP
 - Any combination for A/B comparisons
 - RTL<->RTL applications
- Guide File
 - Precision, Synplify_pro, Design_Compiler, user
- Technology Library
 - FPGA FV libraries (not simulation-lib)
 - Actel, Altera, Atmel, Xilinx

Outputs

- EQUIVALENT, DIFFERENT, No
 Differences Found(exceptions)
- Compile reports, Match reports, Solve reports
 - Matched A/B pairs which form targets
 - Ignorable instances (unused logic)
 - Lists of removed instances (non-qualified targets)
- Debug tools to locate errors
- Schematics

Simple Results

Comparison Summary	
Total number of comparison points:	1889
Number of Equivalent comparison points:	1889
Number of Different comparison points.	0
Number of Different comparison points.	
Number of Demoved comparison points.	0
Number of Removed comparison points:	0
Number of Wessland summarian aciety.	0
Number of Unsolved comparison points:	0
- Designs are EQUIVALENT -	

FPGA Support

- The Major FPGA vendors made libraries for Formal Verification
 - These are not the same as simulation libraries because they must be synthesizable
 - Actel, Altera, Atmel, Xilinx (All devices in production)
- The Synthesis tool Must prepare a "guide" file
 - The alternative is too hard for users
- Synthesis
 - Precision (Mentor)
 - Synplify_pro (Synopsys)
- Routing
 - Actel
 - Altera
 - Atmel
 - Xilinx

Automation in the Precision - FormalPro Flow

- Precision provides guide/setup file to FormalPro (FVI file)
- Supported Precision optimizations
 - Merged registers
 - Duplicated registers
 - Inferred counters
 - Eliminated registers
 - FSMs
- All "guidance" is either selfchecking or independently fabricated
 - New state table for FSM

FormalPro LEC Summary

- FPGA synthesis is complex and <u>needs</u> verification
- FormalPro LEC can be applied efficiently to FPGAs with help from synthesis
- LEC provides Functional test coverage of netlist Logic and connections
- LEC transfers RTL coverage to the netlist by equivalence
- Design must pass STA to verify timing
- FormalPro LEC provides verbose records of what <u>is</u> and <u>is not</u> tested

22

FormalPro 2011.3 (release November 2012)

Multi-core processing : Makes use of multi-core CPUs by default

(-mp 2 is now the default to enable faster results)

- Introducing Windows XP & Windows 7 platform support : Supported with a 2011,3 installer. This build accepts existing Linux license files/keys. True PC support for PC based FPGA developers.
- Solaris 10 no longer supported : allows focus on optimizing Linux and Windows platforms
- Low disk space warning : New warning message if disk space is less than 2Gb at the start of Compile, Match or Solve (provides a clue if subsequent execution fails for disk access reasons)
- ROADMAP
 - Continue improving FPGA memory support
 - Work on retiming in R&D

www.mentor.com

Space FPGA Users Group Workshop, 6-7th November