

Agenda:

- 1. SCOC3 Features
- > 2. Development History
- 3. Validation results
- > 4. Radiation test results
- > 5. Development Kit
- > 6. Commercialization support

1. SCOC3 Features

Introduction to the SCOC3 ASIC

SCOC3 is the **S**pacecraft

Controller

On a

Chip

based on LEON3FT

- Tailored for platform OBC (spacecraft control, AOCS)
- Also very well suited for payload computers

SCOC3 Key Features (1/2)

All the core functions of a platform computer on a single chip

- LEON3FT + GRFPU (with large caches and MMU) provide 97 MIPS @ 80MHz
- > CCSDS TM/TC interface: direct coupling with transponders
- 7 x SpaceWire-RMAP
- > 2 x **1553**
- > 2 x CAN
- 4 x UART
- CCSDS Time Management
- Compatibility with both SDRAM and SRAM Can address up to 20 Gbits
- Security module as an option (authentication, deciphering)
- Debug facilities (IP Monitor, LEON DSU)

SCOC3 Key Features (2/2)

All the core functions of a platform computer on a single chip

- ATC18RHA ASIC
- Typical power consumption:
 - > 1W @32MHz
 - > 1.9W @80MHz
- Very good radiation performance
 - > 300 krad total dose
 - **>** SEU $< 10^{-5}$ / day
 - > Latchup free

This document and its content is the

The satellite platform management

- SCOC3 therefore groups all the digital functions of a platform OBC on a single chip:
 - > Processing resources for the flight mission SW
 - > TM/TC services & interfaces with the RF communication chain
 - > General communication services with the avionics and payload equipments through an on-board communication bus
 - > Time synchronization and distribution
 - > Failure tolerant architecture based on redundancy & reconfiguration
- SCOC3 enables significant gains in size, mass and power at OBC level (enabled to shrink Astrium OBC from 3 boards to 2 smaller boards)

SCOC3 Architecture

CPU subsystem

SCOC3 Architecture

CPU + IO + TMTC subsystems

SCOC3 key competitive advantages

- Processing performance depends on:
 - > core performance
 - SCOC3 uses LEON3FT core
 - > cache size
 - SCOC3 has larger caches (2x to 4x more than competitors)
 - > memory throughput & latency
 - SCOC3 has 2x memory throughput thanks to the 2 memory buses
 - > clock frequency
 - SCOC3 runs at 80MHz over full spatial range, with SRAM as well as SDRAM

December 2012 - p. 10

SCOC3 key competitive advantages

- Additional advantages of 2 AHB buses:
 - > IO traffic does not impact CPU
 - Application validation eased (WCET calculation in particular)
 - ➤ IO bus can operate at lower frequency than CPU to reduce power
 - when CPU runs at 80MHz, TM/TC is slowed down to 40MHz
 - power gain of 25% at 80MHz (1.9W instead of 2.5W)

Autonomous and SW-friendly modules

December 2012 – p. 11

SCOC3 key competitive advantages

- All the modules and IOs are available simultaneously (except multiplexing on each of the 2 CAN/1553 ports)
- SDRAM Scrubbing is performed automatically in HW
- SCOC3 is Flight-proven
- Complete ecosystem (Qualified Simulator and Basic SW in particular)

2. SCOC3 Development History

2001-2003: SCOC prototype design, SCOC1

- Selection of functions
- Preliminary architecture definition (based on LEON1)
- Development of a HW demonstrator (BLADE board)
- Development of a SpW IP Core
- Supported by ESA contract #13345/99/NL/FM "Building Blocks for System On-a-Chip" and Astrium internal funding

Spot 6 launch

Sep. 2012

TRL 9

TRL 8

TRL 7

TRL 6

TRL 5

TRL 1

2003-2006: Refinement of SCOC1 into SCOC2

- Upgrade to LEON2FT
- > Evaluation of several IP Cores
- Performance assessment of different architectures
- Supported by Astrium internal funding

Spot 6 launch

Sep. 2012

TRL 9

TRL 8

TRL 7

TRL 6

TRL 5

TRL 2

TRL 1

This document and its co

2006-2009: Development of the **SCOC3** System-on-Chip (1/2)

SCOC1

Development of new IP Cores

Architectural design and verification (simulation and FPGA prototyping)

Supported by ESA contract #20167/06/NL/FM "Further Development of the Spacecraft Controller on a Chip" and Astrium internal funding

SCOC₂

SCOC3

TRL 9

TRL 8

TRL 7

TRL 6

TRL 1

This document and its conten

2006-2009: Development of the **SCOC3** System-on-Chip (2/2)

SCOC1

2001

2000

- Manufacturing
- ASIC Validation
- Dev. of a Demonstration Basic SW
- Radiation test

Supported by ESA contract #22358/09/NL/JK "SCOC3 ASIC Manufacturing, Test and Validation", and Astrium internal funding

SCOC₂

2005

2006

2003

SCOC3

2008

ASTRIUM

Spot 6 launch

TRL 9

TRL 8

TRL 7

TRL 6

TRL 5

TRL 2

TRL 1

This document and its content is the prop

SCOC3 Development Process

3. Validation Results

Verification results

SCOC3 Verification (before the foundry):

D

Validation results

- SCOC3 validation (on the ASIC prototype):
 - > hardware validation:
 - functional validation (numerous HW-oriented tests performed in various temperature and voltage conditions, with various clock frequencies)
 - electrical characterization (oscilloscope measurements of signals, memory accesses; power consumption measurements)
 - functional characterization (measurement of operating limits on clock frequencies, voltages, wait states)
 - > software validation:
 - validating the functionality from a software point of view (avionics-level tests defined in co-engineering between the SW team and the Data Handling architect, with performance measurements in representative and worstcase scenarii)

December 2012 – p. 21

4. Radiation Test Results

Objective of the Radiation Test

- The objective of the radiation test was to confirm the existing radiation analysis by validation of some experimental results
 - > Using ATMEL data, test sensitivities were estimated
 - > These predictions were compared to the actual test results
- Choice to have multiple tests focusing on specific parts of the design rather than a complex test activating all the functions at once
 - > Data needs to be analyzable and exploitable
- 7 tests have been developed

December 2012 - p. 23

SCOC3 Radiation Test

- SCOC3 radiation test took place at RADEF (Jyvaskyla, Finland) on 5-7 Sept. 2012
- Heavy Ions Testing

ſ

SpW Test Results

- The SpW test involved: 2 SpW + CPU + utilities.
- > Results: 150x less sensitive than predicted.

De

Caches Test Results

- The test of the caches involved: Inst. & Data caches + CPU + utilities.
- Results: 15x less sensitive than predicted.

Decemb

Radiation Test Results

Main results:

- > SEL: SCOC3 is insensitive to SEL and to Electrical Failure (tested up to 65 Mev.cm2/mg)
- > SEU: The observed SEU rates are less than the predicted SEU rates: from 5.6x less to much more.
 - One reason for this is logic masking: in modules involving DFFs and logic, some errors occurring in the logic will not generate a functional error
 - On the memory tests, the results are closer to the estimations
- > SET: One test was run at both 32MHz and 80MHz to quantify the proportion of SEUs due to SETs sampled by DFFs.
 - No significant cross-section variation observed between the 2 frequencies, on the 5 comparison points.

December 2012 – p. 27

5. SCOC3 Development Kit

SW Development Environment

- The SCOC3 LEON3 core is readily usable by developers already working with ERC32 or LEON2 based computers
- The software development environment includes the compiler + debug tools and is available with an Eclipse interface (as well as in command line)

> SCOC3 is compatible with many OS (RTEMS, VxWorks, ...)

SCOC3 SW modules

Provided with SCOC3

- BIOS and Drivers for I/O's: SpW, 1553, CAN, TM/TC, UART...
- Board Support Package for the RTEMS Operating System
- > Boot
- Demonstration SW: test applications serving as SW examples
- > The first version (demonstration level) is already available
- A Flight-Quality version is planned for beginning of 2013

This document and

SCOC3 STARKIT

Performance evaluation, SW development, SW R&D

- The SCOC3 Starter Kit is a FPGA-based development platform & evaluation board
 - ➤ Suitable for early SW development and rapid prototyping of applications using SCOC3
- > It is 100% representative of SCOC3 and its interfaces:
 - > SCOC3 VHDL design in a Xilinx
 - > on board memory
 - → all of SCOC3 interfaces (2x1553, 2xCAN, 4xUART, 7xSpW, TM/TC...)
- It is scalable and can be adapted or extended through expansion boards

SCOC3 Simulator

SW development and qualification

- SCOC3 Simulator is fully representative of SCOC3 in current applications
 - It has been validated and calibrated with real HW to make it suitable for flight software development and qualification
- Used for SW development, validation, qualification and operations at spacecraft level
 - Ability to fully control execution time
 - Integrated with non intrusive debug functions
 - > Failure injection capabilities to exercise SW error cases
- SCOC3 Simulator executes as fast as real time
 - Using JIT technology
- Test SW in Java
 - > Eclipse plug-in

SCOC3 Simulator

SW development and qualification

6. SCOC3 Commercialization

Development status & Availability

ASSP & Commercialisation Plan

- SCOC3 is an ASSP (Application Specific Standard Product) available to the European space industry under fair and equal conditions
- Astrium is the single contact point to customers for providing components, support and additional services
- > This is formalized with ESA through a Commercialisation Plan

Quality levels

- > 3 Quality levels are available
 - > EM / Prototype
 - > QML-Q
 - > QML-V

- ATMEL MOQ (Minimum Order Quantity) apply, but discussions have started with ESA to waive this constraint by having a batch of components on stock (i.e. no MOQ for the final customer)
 - > The idea is to put components on stock
 - Still under discussion (requires a budget)

ASTRIUM

December 2012 - p. 37

The complete offer – summary

December 2012 – p. 38

Conclusion

Conclusion

- SCOC3 is a powerful processor and spacecraft controller
- SCOC3 is fully validated and already selected for 8 satellites
- SCOC3 is flight-proven since 9th September 2012
- SCOC3 is commercially available with a complete ecosystem for integration, use and SW development

This document and its contra

Contacts

www.scoc3.com

Franck Baud

Product Line Manager – Avionics Products

Phone: +33 (0)5 62 19 85 75
Portable: +33 (0)6 35 48 07 41
Email: franck.baud@astrium.eads.net

Mathieu Vandenbossche Head of Commercial Products & Services Department

Phone: +33 (0)1 82 61 24 28 Portable: +33 (0)6 86 20 66 46

Email: mathieu.vandenbossche@astrium.eads.net

