Introduction

Space applications are more and more demanding in terms of image compression performances: instrument resolution, data rate, agility and swath are continuously increasing.

This concerns both Earth observation and scientific missions.

It multiplies by 10 the volume of picture acquired on one orbit.

In parallel, the satellites size and mass are decreasing, requiring innovative electronic technologies reducing size, mass and power consumption.

In this context and in the frame of an ESA contract, Astrium has developed a new image compression ASIC: the CWICOM.
Industrial Organization

The CWICOM project consortium is constituted by:

- Astrium Satellites SAS (France)
- Astrium Satellites GmbH (Germany)
- Techno System Development (Italy)
- Atmel (selected as foundry for the CWICOM ASIC)

Development Flow

1. Definition Phase
2. Requirement Review
3. Architectural Design
4. Detailed Design
5. Critical Design Review
6. Asic Manufacturing
7. Asic Validation
8. Validation Review
9. Asic Commercialization
10. Breadboard Design and Manufacturing
11. FPGA validation
12. Flight Model Asic
This document and its content is the property of Astrium [Ltd/SAS/GmbH] and is strictly confidential. It shall not be communicated to any third party without the written consent of Astrium [Ltd/SAS/GmbH].

Objectives

Develop a high-performance image compression ASIC:
- Compressing with CCSDS image compression standard
- Delivering data with CCSDS packet protocol standard
- Reaching a high data rate of 60 Mpix/s
- Processing pixels up to 16 bits
- Supporting image width up to 2600 pixels (S2)

This is what achieved the CWICOM development

CWICOM stands for **CCSDS Wavelet Image COMpression** ASIC, and is developed in the frame of an ESA contract
Input Interfaces

- Parallel Input Interface, SPW or SPI
- Up to 16 bits pixels
- Up to 3496 pixels per line

CWICOM Compression Core
CWICOM Compression Core

- CCSDS Standard for Data Compression \(\rightarrow\) **CCSDS 122.0-B-1**
- CCSDS Space Packet Protocol \(\rightarrow\) **CCSDS 133.0-B-1**

Pixel Equalization

- The equalization consists in a Non-Uniformity Correction (NUC) applied to correct the **non uniform response/sensitivity** of the line-CCD device.
- It performs a bi-linear **correction** on each pixel in a image line.
- Equalization can be **bypassed** to keep the input pixels unchanged.

Non uniformity on a line-CCD device

every pixel of a column is corrected with the same set of parameters
Wavelet Transform

- Example of a very simple 2-tap filtering:
 - \(LF = (\text{PIX1} + \text{PIX2}) / 2 \)
 - Low-pass Filter
 - Takes information from the average value of the two pixels
 - \(HF = (\text{PIX1} - \text{PIX2}) / 2 \)
 - High-pass Filter
 - Takes information from the gap between the two pixels
- This mathematical operation is fully reversible

Wavelet Transform

- 1D DWT (Discrete Wavelet Transform) of one line (one row) of pixels

 | B0 | \(\rightarrow \) | LF | HF | LF | HF | LF | HF | LF | HF |
 |

- 2D DWT Level 1: First step \(\Rightarrow \) DWT on rows

 | B0 | \(\rightarrow \) | LF | HF | LF | HF | LF | HF | LF | HF |
 |
 | B0 | \(\rightarrow \) | LF | HF | LF | HF | LF | HF | LF | HF |
 |
 | B0 | \(\rightarrow \) | LF | HF | LF | HF | LF | HF | LF | HF |
 |
 | B0 | \(\rightarrow \) | LF | HF | LF | HF | LF | HF | LF | HF |
 |
 | B0 | \(\rightarrow \) | LF | HF | LF | HF | LF | HF | LF | HF |
Wavelet Transform

- 2D DWT Level 1: Second step
 → DWT on columns

- Low-pass and High-pass filters generate different sub-bands B, V, H, D

- After a first 2D DWT, the elements of the B sub-band are grouped and used as input for a second DWT filtering
- After this second DWT, once again the resulting B sub-band is used as input for a third DWT filtering
Wavelet Transform

- This means that DWT is applied 3 times → 3 levels of decomposition

- CCSDS standard describes two DWT filters with 9 & 7 taps: a 9/7 float filter and a 9/7 integer filter
 - Both are implemented inside the CWICOM
Bit plane encoder

- The coding is performed **bit plane after bit plane**, on groups of consecutive **blocks** called **segments**, with an **entropy coding** using variable-length codewords.

- Blocks are constituted by 64 coefficients.

Bit plane encoder

- The coding is performed **bit plane after bit plane**, on groups of consecutive **blocks** called **segments**, with an **entropy coding** using variable-length codewords.

<table>
<thead>
<tr>
<th>Data01</th>
<th>Data02</th>
<th>Data03</th>
<th>Data04</th>
<th>Data05</th>
<th>Data06</th>
<th>Data07</th>
<th>Data08</th>
<th>Data09</th>
<th>Data10</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 0 0 0 0 1 x x</td>
<td>S 0 0 1 x x x</td>
<td>S 0 0 1 x x x</td>
<td>S 0 0 1 x x x</td>
<td>S 0 1 x x x x</td>
<td>S 0 0 1 x x x</td>
<td>S 1 x x x x</td>
<td>S 0 0 0 0 1 x x</td>
<td>S 0 0 1 x x x</td>
<td>S 0 0 0 0 1 x x</td>
</tr>
</tbody>
</table>

8 bits
Bit plane encoder

- The coding is performed **bit plane after bit plane**, on groups of consecutive **blocks** called **segments**, with an **entropy coding** using variable-length codewords.

![Bit plane encoder diagram](image)

CCSDS Packets

- Data (compressed or bypassed) are embedded with insertion of standard headers in order to generate a CCSDS source packet.

![CCSDS Packets diagram](image)
CCSDS Packets

- Data (compressed or bypassed) are embedded with insertion of standard headers in order to generate a CCSDS source packet.
CWICOM Control - Links

- CWICOM is easily configurable and can be controlled through a standard serial link interface, either SPI or SPW link:
 - SPW-RMAP (Remote Memory Access Protocol → ECSS-E-50-11)
 - SPI serial link
- Both links give access to all of the CWICOM internal registers

![Diagram showing connections between external SpW TxClock, SpW RMAP, PLL, and System Clock]

CWICOM Control - Commands

- The configuration consists in the programming of some registers to define image size, pixel dynamic, CCSDS output header..., in the load of equalization parameters and finally in a single command
- **CONF command**
 - To configure the quality mode by a truncation at a specified point (bit plane number and coding stage)
 - To configure if we are in compression or bypass mode
 - To define the DWT filter type (9/7 Integer or 9/7 Float)
- After configuration, the CWICOM is able to perform image compression with only two commands → **ease of use**
 - **START command**
 - To start the compression
 - **STOP command**
 - To stop the compression
CWICOM Architecture

CWICOM Breakthrough

60 Mpix/s

Classical TVHD image 720p = 1280 x 720 = 921 600 pixels
So CWICOM Data Rate is equivalent to 60 TVHD images per second
CWICOM Breakthrough

60 Mpix/s

3 Asics WICOM (20Mpix/s each) and 21 SDRAM
The 60Mpix/s challenge

- First, CWICOM architecture implements **pipelined data flows**
- Then CWICOM architecture implements a very efficient **internal embedded memory** organization
- It allows **higher data rate** performances because sharing an external memory between functional blocks is one of the main source of **bottleneck** in processing architectures

Moreover, it avoids the use of **external memory** with difficult **memory chip procurement** and potential **obsolescence** of any specific external memory interface

- It leads to a **very simple stand-alone implementation** with a reduced number of I/Os and to **Standard Surface Mount Package**

CWICOM Performances

- Compression Core Processing performance = 1 pixel per cycle
- ASIC overall performance = almost 1 Mpixel / MHz

![Diagram showing CLIN, CTLIN, DVLIN, DATAIN, Pixel line Synchrons, Image Auxiliary Data Phase, and Pixels Phase]
Memories required for the storage of temporary data

Memories required for the storage of temporary data

No external memories
Technology

- CWICOM target is the **ATMEL ATC18RHA rad-tolerant technology**
- CWICOM has embarked on the **Multiple Project Wafer MPW #5**
- It will be available in different **quality grades**: QML-Q & QML-V
- Foundry (prototypes) has been done **end 2012**
CWICOM Package & Pinout

› CQFP 256
› Standard Surface Mount Package

› Pinout :
 › 76 functional pins
 • Input Interface: 19 pins
 • Output Interface: 19 pins
 • SpaceWire Link: 4 pins
 • SPI Serial Link: 4 pins
 • Clock & Reset: 2 pins
 • IDLE Flag: 1 pin
 • PLL: 9 pins
 • Test: 18 pins
 › 52 power pins
 › Total 128 used pins / 256 pins

CWICOM Pinout Topology

Parallel Input IF
SPW Link
Reset, Clk, PLL
Tests pins
Commercialization

- CWICOM will be available to the European space industry as an ASSP (Application Specific Standard Product) under fair and equal conditions.
- The commercialization plan covers the CWICOM itself in various quality levels, but also related technical support and documentation.
Commercialization

- A comprehensive framework has been set up to support the CWICOM commercialization

- CWICOM commercialization is organized by ASTRIUM, acting as the ASSP Procurement Agency (APA)

Commercialization

- ASTRIUM SAS proposes a commercialization scenario with "Full initial procurement and industrial NRE covered by ASTRIUM"
- In that case, ASTRIUM SAS would propose to any customer an access to the ASIC with a mitigated MOQ (Minimum Of Quantity) instead of the MOQ requested by the ASIC manufacturer
Validation Strategy

Driver: reach a "good at first run" ASIC design

- CWICOM validation steps:
 - Algorithmic simulations → to define HW implementation
 - Bit-accurate emulator in C → SW Reference Model
 - VHDL simulations in a representative testbench → results compared to the SW Reference Model output
 - HW Prototyping on a Compressor Board with FPGA
 - Compressor Board tests with the first ASIC samples
TSD contribution to CWICOM

- TSD has contributed to the ASIC design and developed the Bit-accurate SW model and the CWICOM Validation & Evaluation Platform.

- Contribution to ASIC design:
 - Development of the VHDL Input Interface block of CWICOM
 - Integration of the CWICOM VHDL logic
 - System level simulation

TSD contribution to CWICOM

- The CWICOM Validation & Evaluation platform provides all the data handling and interface resources to prototype the CWICOM RTL code with FPGA and to test the ASIC samples both in a representative H/W environment.
SW Reference Model Development

- The following activities have been performed
 - Market survey
 - Identification of potential applications
 - Requirement assessment
 - Data compression algorithm analysis
 - Design of the software reference model

SW Reference Model
A Bit-accurate SW C_Model

- The Reference Model Software consists of three main packages:
 - Command Line Interface
 - Graphical User Interface
 - Codec Package
- The Codec is based on:
 - The Discrete Wavelet (DWT)
 - The Bit Plane Encoder (BPE)
SW Reference Model
A Bit-accurate SW C_Model

- Using the GUI it’s possible to select the following parameters:
 - Input image file
 - Width, height, pixel depth
 - Compression factor or bpp
 - Filter type (9/7 integer or float)
 - Code word length
 - Blocks for segment
 - DC Stop
 - Bit Plane Stop
 - Stage Stop
 - Custom Weight
 - Equalization Parameters

- The Command Line Interface is able to receive all the parameters, by using 2 xml files:
 - A Configuration File
 - An Input file
CWICOM VHDL Test (TSDev)

The following activities have been performed:

- Development of the Evaluation and Validation platform based on Xilinx FPGA (design, production and assembly)
- Prototyping of the ASIC design with FPGA by the Evaluation and Validation platform; the CWICOM netlist has been mapped in a Virtex-5LX Fpga by Xilinx.
- Validation of the ASIC design

→ All the test procedure foreseen in the validation plan have been run successfully

Evaluation & Validation Board Usage

→ How the Evaluation & Validation board could support the activities of CWICOM potential users

→ The Evaluation and Validation electronic platform developed by TSDev allows a CWICOM potential user:
 - the evaluation of ASIC functionalities for test & development purpose
 - an easy and economic way for the development of a breadboard which includes a CWICOM equivalent hardware (implemented by Virtex-5 FPGA). The electronic platform could be also customized by TSDev including other interfaces or features.
The CWICOM samples have been validated using the Validation & Evaluation Platform designed by TSD which provides all the interfaces for both:

- prototyping of the RTL code with FPGA
- test of all the functions of the ASIC

It can be used also as a demo platform.

The interfaces include:

- Standard socket to host CWICOM samples
- Camera-Link video input
- Gigabit Ethernet Port
- Compact-flash Card connector
- SpaceWire Interface
- Analog Video Output Interface
- RS232 Ctrl/Cfg and Debug UART line

CWICOM Evaluation Platform

SW Utilities developed for the Evaluation Platform

- **CWICOM Serial Commander**: to send, via RS232, the configuration command to the CWICOM Evaluation platform
- **PktAssembler**: to receive via Ethernet (UDP protocol) the compressed stream and store it on host PC
- **CWICOM Image Splitter**: to split, decompress and display the stored compressed stream in a sequence of single frame
Verification Test
Stand-alone configuration

Stand-alone configuration (Test Mode Configuration) is meant for RTL code prototyping and ASIC validation according to the verification plan:

- The full verification database is pre-loaded on CF card.
- Test data (image data, configuration files, equalization parameters...) are read from CF card.
- The user sends the ID of the Image test to use for validation via UART line using the Serial Commander utility.
- The platform configures CWICOM via SPI interface.
- The selected image is sent via Parallel Input Interface.
- Compressed data are received via Parallel Output Interface.
- Compressed stream is checked against reference file.
- Test results are sent via UART line and displayed by Serial Commander utility.

The Stand-Alone Configuration

SpaceWire Interface Test

- The CWICOM SpaceWire RMAP interface has been tested by using the TSD Ethernet-to-SpaceWire Bridge.
- The SpaceWire RMAP interface on the Bridge is based on the ESA IP core. This provides an independent tool to validate the CWICOM implementation.

The TSD I/F Bridge is based on a proprietary FPGA-based board; it can provide a configurable number and type of communication interfaces (Spacewire, Channel-Link, Camera-Link, GPIO, etc.). The unit implements a bridge between on-board I/Fs and standard Gigabit Ethernet ports.
Verification Test
Live configuration

Live configuration is meant to evaluate CWICOM performances in a representative scenario

- Images are received from real camera
- Configuration parameters are set via UART line using the Serial Commander utility
- CWICOM is configured via SPI interface
- The images’ stream are sent via Parallel Input Interface
- Compressed stream is received via Parallel Output Interface
- Compressed stream is sent via UDP to the Host PC
- Some utilities on the Host PC will be able to store, decompress and display the compressed video stream

Camera characteristics:
- CameraLink base configuration, dual-tap
- Gray-scale Image size of 1600 x 1200
- Pixel dynamics of 10 bit
- Frame rate up to 60 fps (with binning)

Verification Test Results

- For both stand alone and live configurations, all the test procedures specified in the verification plan have been successfully run

- Moreover, further measures and investigations have been carried out in order to acquire significant electrical and timing data relative to the ASIC itself and to estimate the upper limits of the achievable performances
Further tests & measures
Max SysCLK frequency

A subset of the test procedures have been used for an estimation of the limit frequency of the CWICOM itself. For this purpose, the CWICOM SysCLK frequency has been raised progressively up to the condition for which the ASIC output data packets start to contain errors.

The result has been a limit frequency of 72MHz (for which all procedures run successfully); above 80MHz, all the procedures run with errors.

The last observation suggests that the errors have been due to sampling limits of the Evaluation platform instead of the CWICOM compression itself. This hypothesis has been confirmed by further investigations.

Further tests & measures
CWICOM Power supplies (1/3)

A subset of the test procedures have been carried out with the purpose to estimate the current absorption relating to the 1.8V Core and 3.3V I/O supplies. The results below show that the Core supply absorption is dominant.

<table>
<thead>
<tr>
<th>Sys_CLK</th>
<th>Test Procedure</th>
<th>ON current</th>
<th>Peak current</th>
</tr>
</thead>
<tbody>
<tr>
<td>32MHz</td>
<td>083</td>
<td>278 mA</td>
<td>471 mA</td>
</tr>
<tr>
<td></td>
<td>038</td>
<td>627 mA</td>
<td>627 mA</td>
</tr>
<tr>
<td></td>
<td>091</td>
<td>674 mA</td>
<td>674 mA</td>
</tr>
<tr>
<td></td>
<td>092</td>
<td>678 mA</td>
<td>678 mA</td>
</tr>
<tr>
<td></td>
<td>046</td>
<td>596 mA</td>
<td>596 mA</td>
</tr>
<tr>
<td>55MHz</td>
<td>083</td>
<td>410 mA</td>
<td>410 mA</td>
</tr>
<tr>
<td></td>
<td>038</td>
<td>708 mA</td>
<td>708 mA</td>
</tr>
<tr>
<td></td>
<td>091</td>
<td>845 mA</td>
<td>845 mA</td>
</tr>
<tr>
<td></td>
<td>092</td>
<td>818 mA</td>
<td>818 mA</td>
</tr>
<tr>
<td></td>
<td>046</td>
<td>739 mA</td>
<td>739 mA</td>
</tr>
<tr>
<td>65MHz</td>
<td>083</td>
<td>525 mA</td>
<td>525 mA</td>
</tr>
<tr>
<td></td>
<td>038</td>
<td>710 mA</td>
<td>710 mA</td>
</tr>
<tr>
<td></td>
<td>091</td>
<td>870 mA</td>
<td>870 mA</td>
</tr>
<tr>
<td></td>
<td>092</td>
<td>914 mA</td>
<td>914 mA</td>
</tr>
<tr>
<td></td>
<td>046</td>
<td>809 mA</td>
<td>809 mA</td>
</tr>
<tr>
<td></td>
<td>091</td>
<td>1007 mA</td>
<td>1007 mA</td>
</tr>
<tr>
<td></td>
<td>092</td>
<td>935 mA</td>
<td>935 mA</td>
</tr>
<tr>
<td></td>
<td>046</td>
<td>1150 mA</td>
<td>1150 mA</td>
</tr>
<tr>
<td>72MHz</td>
<td>083</td>
<td>580 mA</td>
<td>580 mA</td>
</tr>
<tr>
<td></td>
<td>038</td>
<td>781 mA</td>
<td>781 mA</td>
</tr>
<tr>
<td></td>
<td>091</td>
<td>927 mA</td>
<td>927 mA</td>
</tr>
<tr>
<td></td>
<td>092</td>
<td>914 mA</td>
<td>914 mA</td>
</tr>
<tr>
<td></td>
<td>046</td>
<td>809 mA</td>
<td>809 mA</td>
</tr>
<tr>
<td></td>
<td>091</td>
<td>1007 mA</td>
<td>1007 mA</td>
</tr>
<tr>
<td></td>
<td>092</td>
<td>935 mA</td>
<td>935 mA</td>
</tr>
<tr>
<td></td>
<td>046</td>
<td>1150 mA</td>
<td>1150 mA</td>
</tr>
<tr>
<td>80 MHz</td>
<td>091</td>
<td>650 mA</td>
<td>1007 mA</td>
</tr>
<tr>
<td></td>
<td>083</td>
<td>835 mA</td>
<td>835 mA</td>
</tr>
</tbody>
</table>

Measures on CWICOM 1.8V Core
Further tests & measures
CWICOM Power supplies (2/3)

These measurements at 25C with some images shall be improved by additional tests to establish the real power consumption performance of the CWICOM.

Further tests & measures
CWICOM Power supplies (3/3)

These measurements at 25C with some images shall be improved by additional tests to establish the real power consumption performance of the CWICOM.
HW Demonstration

CWICOM Live Demo (1/5)

A live demonstration using the ASIC will be carried out in ESTEC by the Validation & Evaluation Platform and the test setup showed in the figure which includes also the developed SW utilities which permit the control of the test.
In the live test configuration the FPGAs of the validation platform are programmed to grab images coming from the camera and to move these to CWICOM via the Parallel Input Interface.

After power up, using the Serial Commander software, the user must specify the test configuration (that is, type of transform to use, if equalization is to be applied, the number of byte per segment etc.). All these parameters are sent via RS232 serial line to the Evaluation Platform which configures CWICOM via the SPI interface.

The compressed data are sent back to the Host Computer via the Ethernet connection using the UDP protocol. Using the Packet Assembler software, it is possible to collect all the UDP packet and save it on the host PC.

The saved file then is given in input to the Image Splitter software that reconstructs, decompresses and displays all the images included in the file.

A typical test sequence consists of the actions listed below:

- Power-on of the CWICOM Evaluation & Validation Platform
- launch and configure the Packet Assembler software (set the name and directory of the output file .CWI and other options); “arming” of the SW for waiting for incoming compressed video frames; the software must be placed in the “On Line” state pushing the “On line” button
- launch the Serial Commander SW, configure the parameters to send to CWICOM and start the execution of the operations
- wait for completion of the compression (the Packet Assembler receives the compressed frames via Ethernet); at the end of the process (the state can be seen by the output of CWICOM on the UART interface) the Packet Assembler must be stopped pushing the Off-Line button
- launch the Image_Splitter and select the .CWI file saved by the Packet_Assembler, then start the split process
- double click on a single image in the image file list to decompress and visualize the related image
- push the “Play” button, to start the decompression and visualization process.
The SW windows which permit the control of the Evaluation platform

CWICOM Live Demo (4/5)

Live demonstration of CWICOM ASIC performing image compression
• in Stand-alone mode, based on pre-defined CCSDS test images
• in Live mode, based on real time image capture from a digital camera

CWICOM Live Demo (5/5)
Conclusion

CWICOM Key Features Summary

- High data rate: **60 Mpixels/s**
- Pixels dynamic: up to **16 bits**
- Image width: width up to **3496 columns**
- Image height: **unlimited** in push-broom
- Op frequency: ~60 MHz
- Compression: 0.5 bpp to 10 bpp
- Memory gates: ~5 Mbits
- Logical gates: ~1 M gates
- Packaging: **CQFP 256**
- Size: 37 x 37 x 3 mm
- Mass: ~20 g
- Radiation: 300 Krad total dose
- Power: ~25 mW per Mpix/s (TBC)
Conclusion

Status
- First foundry has been launched: ASIC prototypes have been **successfully validated** on a dedicated Compressor Board.
- CWICOM results from a **fruitful ESA, Astrium & TSDEV** collaboration.

Next step
- Consolidation with ESA of **Commercialization Plan** framework (MOQ, price, support...) in order to propose the CWICOM as an ASSP.

Conclusion

Summary
- The **CWICOM ASIC** is a high performance image compression ASIC.
- Fully compliant with the CCSDS image compression standard.
- High data rate performance of 60 Mpix/s.
- Radiation hardened.
- Low power consumption.
- Provided in a CQFP256 package easy to mount for SME.
- No need for any additional external memory.
- Easy to use, with possibility of control through SpW or SPI link.

- The **CWICOM ASIC** has been developed to fulfill the needs of space applications more and more demanding in terms of image compression performances and integration constraints.
Contacts

Raffaele Vitulli
ESA/ESTEC
raffaele.vitulli@esa.int

Jean-Luc Poupat
EADS Astrium
jean-luc.poupat@astrium.eds.net