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Abstract—This paper presents an efficient technique to per-
form design space exploration of a multiprocessor platform that
minimizes the number of simulations needed to identify a Pareto
curve with metrics like energy and delay. Instead of using semi-
random search algorithms (like simulated annealing, tabu search,
genetic algorithms, etc.), we use the domain knowledge derived
from the platform architecture to set-up the exploration as a
discrete-space Markov decision process. The system walks the
design space changing its parameters, performing simulations
only when probabilistic information becomes insufficient for
a decision. A learning algorithm updates the probabilities of
decision outcomes as simulations are performed. The proposed
technique has been tested with two multimedia industrial appli-
cations, namely the ffmpeg transcoder and the parallel pigz
compression algorithm. Results show that the exploration can be
performed with 5% of the simulations necessary for the most used
algorithms (Pareto simulated annealing, nondominated sorting
genetic algorithm, etc.), increasing the exploration speed by more
than one order of magnitude.

Index Terms—Decision theory, design space exploration (DSE),
multiprocessor, system-level design, system-on-chip (SoC).

I. Introduction

THE CONTINUOUS increase of transistor density on a
single die is leading toward the production of more and

more complex systems on a single chip, with an increasing
number of integrated components and processing units. This
brought to the introduction of the system-on-chip (SoC), that
integrates on a single medium all the components of a full
system. The design and development of such systems raises
new challenges due to the large design space and tight design
and time-to-market constraints [1].

These parametrized embedded SoC architectures must be
optimally tuned (i.e., their configuration parameters must be
appropriately chosen) to find the best trade-off in terms of the
selected figures of merit (e.g., energy and delay) for a given
class of applications. This tuning process is called design space
exploration (DSE) [2].

In general, this optimization problem involves the min-
imization (or maximization) of multiple objectives, making
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the definition of optimality not unique [3]. In particular, the
solution of multiobjective optimization problems consists of
finding the points of the Pareto curve [4], [5], i.e., all the
points which are better than all the others for at least one
objective. However, a Pareto curve for a specific platform
is available only when all the points in the design space
have been evaluated and characterized in terms of objective
functions. This full search approach is often unfeasible due
to the high-cardinality of the design space and to the long
simulation time needed for evaluating the objective functions.

In the past, multiprocessor platforms have been explored
using either classical heuristic algorithms (such as tabu search,
simulated annealing, etc.) [6] or pruning techniques that try to
reduce the size of the design space [7]. Both classes of tech-
niques rely on simulation as a means for evaluating the system-
level metrics corresponding to a newly found configuration. If
system-level simulation can be performed in a reasonable time,
these algorithms provide good results. This is generally not
true for multiprocessor systems-on-chip, for which simulations
can be rather lengthy and time consuming [8]. This paper
addresses the platform configuration optimization problem by
exploiting the domain knowledge provided by the definition of
a design platform. The idea is to move the DSE complexity
from simulation to probabilistic analysis of parameter transfor-
mations. Exploration is modeled as a Markov decision process
(MDP) [9], and the solution to such MDP corresponds to the
sequence of parameter transformations to be applied to the
platform to maximize (or minimize) the desired value function.
The proposed approach requires to simulate the system only
in particular cases of uncertainty, massively reducing the
simulation time needed to perform the exploration of a system,
while maintaining near-optimality of the results.

Overall, this paper provides three main contributions:

1) the development of an efficient exploration methodology
that reduces the number of simulations required for
DSE;

2) the formalization of platform domain knowledge for
MPSoC;

3) the definition of an efficient solution algorithm for the
exploration problem.

The algorithm has been tested on two widely used industrial
applications, ffmpeg (a video encoder/decoder) and a parallel
implementation of the gzip compression algorithm, and on a
small benchmark consisting of an implementation of Bailey’s
6-step fast Fourier transform (FFT) algorithm. Results show
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that the number of simulations required by our algorithm is
one order of magnitude smaller than what required by standard
techniques with a comparable level of accuracy.

DSE using MDP is based on the ideas presented in [10];
with respect to that work, the exploration strategy has been
refined and optimized and a more extensive set of experiments
executed. We have also compared our approach with ten state-
of-the-art multiobjective optimization algorithms.

This paper is structured as follows: Section II summa-
rizes classical exploration algorithms for multivariate analysis;
Section III introduces the decision model and its solution
algorithm, while the application of the methodology to two
industrial benchmarks is described in Section IV; finally,
Section V draws some concluding remarks.

II. Related Work

Three main classes of techniques have been proposed in
literature for aiding the DSE of system architectures:

1) techniques that try to reduce the design space size [4],
[11], [12];

2) techniques that provide exploration heuristics [6], [13];
3) techniques based on statistical analysis aimed at guid-

ing the exploration to specific regions of the design
space [14], [15].

Once the candidate solutions are identified, two mechanisms
(or a combination of both) can be used for the evaluation:
detailed simulation [16] or estimation of performance using
predictive models [15].

Class (1) techniques limit the exponential increase of de-
sign space size by eliminating those configurations that are
certainly nonoptimal. In [4], the design space is divided
into partitions, and exhaustive search is performed inside
each partition. Then the Pareto-optimal configurations of each
partition are combined to determine the global curve.

A different technique, proposed in [11], aims at reducing the
number of configurations from the product of to the sum of the
number of parameters. This strategy orders applicable parame-
ter transformations according to their effect on the system met-
rics, then applies transformations in that order. Transformation
effects are evaluated through exhaustive simulation on a set of
benchmarks and, as such, they are valid only for the same
class of applications as the benchmarks. Although complexity
is highly reduced, the exploration results remain in general
sub-optimal. A similar sensitivity analysis is also performed
in [12]: the design of experiments (DoE) [17] technique is
employed to characterize the impact of the parameters on the
system performance. Once sensitivity analysis is performed,
heuristics are used to modify parameters and determine the
optimal system configuration. It is worth noting how the
technique is limited in the number of system configurations
that it can take into account.

DoE is also employed by Palermo et al. [18] to generate
an initial set of experiments, creating a coarse view of the
target design space. Response surface modeling [19] is then
used to refine the exploration; this process is iterated to cover
the design space. Our approach does not need the initial set
of experiments, it requires a smaller number of iterations to

update probabilities (learning is performed per action and not
globally), and better supports nonuniform response surfaces
(due to their implicit modeling).

Binary decision diagrams are used by Mohanty et al. [7]
to reduce the design space: first unfeasible configurations are
eliminated, then the remaining space is evaluated through
system-wide performance estimation models, further pruning
it. In the end, the identified solutions are simulated. The
approach is somewhat similar to ours in that we also use
estimation models (called movement vectors in the following)
to identify the nonoptimal configurations, thus avoiding their
simulation. We differ in that the estimation models are not sim-
ply applied to standard optimization algorithms (such as GAs),
but they are tightly integrated with the exploration framework,
consistently reducing the number of simulations. [20] uses
decision trees to perform DSE of memory management, but
without applying decision theory to obtain automated explo-
ration.

Techniques in Class (2) apply heuristics to the exploration
problem. In this context, genetic algorithms have often been
used for architectural exploration [6], [13]. Although they
reduce the time needed for exploration by 80% when com-
pared to exhaustive search, their effectiveness is bound to large
sample populations. This means that even if the performance
gain increases with the size of the population, simulation
times still remain excessive for complex applications. Pareto
tabu search and Pareto simulated annealing (PSA) belong
to this category of function approximation heuristics, and
in [16] they are applied to architectural exploration. Both
techniques are much more efficient than exhaustive search, but
to reach an acceptable accuracy they require a high-number of
simulations. A more detailed description on the use of heuristic
algorithms in the context of multiobjective optimization is
given in [21].

Other approaches apply multiagent exploration algorithms
such as ant colony optimization [22] and particle swarm
optimization [23]. Although these are very efficient for some
class of optimization problems, they require a large number
of evaluations (several for each agent).

Algorithms of Class (3) also aim at pruning the design space
and at directing the search to the most promising regions.
Genetic algorithms and exact methods are combined in [14]:
the DSE problem is formalized as a multiobjective 0–1 integer
linear programming problem. A pseudo-boolean solver is used
to force the genetic algorithm to stay in the feasible search
space. Since all our search space is feasible, applying such
approach to our system would simply result in the application
of a heuristic exploration algorithm.

Ascia et al. [15] tackle the problem of DSE reducing the
number of evaluations and the time required to evaluate (i.e.,
simulate) a system configuration. They propose the use of
evolutionary algorithms (EA) as an optimization technique and
fuzzy systems (FS) for the estimation of the objective function:
the EA evolves normally while the FS learns from simulation,
until it becomes expert and it can be used for estimating system
performance. The main drawback of the approach consists
of the high-number of simulations necessary to train the
FS.
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The algorithms described so far approach the problem as a
black-box: they do not take into account the peculiar features,
the design constraints and the a-priori knowledge of the target
platform. For instance, platform-based design [24] methodolo-
gies provide a useful amount of knowledge that can be used
to define better exploration strategies, consistently reducing
the number of required simulations. This paper provides the
theoretical infrastructure to exploit this information (referred
to as domain knowledge), introducing an exploration algorithm
based on decision theory.

III. Proposed Methodology

This paper proposes a new methodology for the DSE
of platform-based computer systems [25]. During the initial
phases of the design, defining the optimal micro-architecture
configuration of a system can be very challenging, especially
when the effects of varying the configuration parameters are
unknown. DSE of a platform can be seen as the path of two
points in two spaces: the parameter space P (e.g., the cache
size, the number of processors, etc.) and the metrics space M

(e.g., the power consumption, the execution speed, etc.). The
modification of a parameter (e.g., changing the cache size)
is referred to as an action, and determines a movement in the
parameter space that modifies the current system configuration.
This movement is deterministic and discrete and produces a
corresponding movement in the metrics space (e.g., a change
in the execution time) defining the results of the action.

Therefore, the exploration of the design space of an ap-
plication platform can be seen as a path that leads an initial
configuration to a destination configuration with “better” char-
acteristics.

The results of actions are generally not known a-priori,
meaning that they can only be accurately determined through
simulation. We propose to substitute simulation with a prob-
abilistic estimation of the effects of an action, modeling the
problem as an MDP [26].

Definition 1: An MDP is a tuple 〈S, A, T, R〉 where:

1) S is the set of possible system states;
2) A is a set of possible actions, i.e., modifications of the

platform parameters;
3) TPD : S × A −→ �(S), the state transition function, is

the probability density function for every state-action
pair: TP(s, a, s′) is the probability to get in state s′

applying action a from state s;
4) R : S × A × S′ −→ R is the expected reward for each

state-action pair, i.e., R(s, a, s′) is the expected reward
for executing action a from state s and ending in state s′

(for example in our domain the reward can be the speed
gained from the action of doubling the cache size).

An MDP is also characterized by the Markov property [9]:
the state transition function TPD depends only on the current
state and the chosen action.

In general, an MDP is represented by a graph G whose
nodes have a one-to-one correspondence with the system states
S and whose edges are composed of the actions A. In the
following, we will refer to G as either a graph or a tree since,

as detailed in Section III-G, we do not allow backward actions,
thus generating a tree.

Solving an MDP means finding the strategy (i.e., the best
action to be performed from each state in the system) that
maximizes the expected reward R. This means that the ex-
ploration starting in state s will consist of a series of steps,
trying to maximize a given metric. In our case, we start from
a random platform configuration and we walk through the
different configurations until we reach the optimal one.

A. Platform Exploration as an MDP

The platform exploration problem can be modeled as an
MDP.

1) S is the set of all possible configuration-metrics tuples.
2) A is the set of applicable actions, i.e., modifications to

the platform parameters.
3) TP is the probability density over the metrics space;

before simulation we just have an estimation of the
metric values, and a change in the parameters (e.g.,
doubling the cache size) corresponds to an interval in
the metric space (e.g., an interval in the execution time)
and, after metric discretization, to more than one state.
TP defines the probability of ending in each one of those
states.

4) R is the reward associated with a movement in the
parameter space, i.e., the difference between the metric
in the starting state s and in the destination state s′.
Using the cache example, R is the speedup obtained by
modifying the cache size.

The Markov property holds: the effect of a transformation
depends only on the configuration to which it is applied
and not on past actions that brought to the given configura-
tion.

In general, the a priori uncertainty about the effects of ac-
tions makes simulation the only way to determine the position
of the current configuration in the metrics space. However,
platform-based design limits the number of parameters and
it partially provides the knowledge to estimate the effects of
actions. In particular, given a transformation in the parameters
space, a corresponding subspace in the metrics space can
be determined. For example, it is possible to estimate that
doubling the cache yields an execution time in the interval
I =

(
Tlow, Thigh

)
; this restricts the use of simulation only for

uncertainty conditions, i.e., when the resulting intervals from
available actions do not provide sufficient information to make
a decision about the best action to be applied.

Algorithm 1 contains a high-level description of the explo-
ration algorithm.

Our approach starts by identifying the configuration param-
eters −→p (e.g., cache size, etc.) and the functions

−→
f : P → M,

which describe how the parameters affect the system’s metrics.
The generation of the graph G follows; this graph encodes
the exploration problem, representing it as an MDP which is
then solved by executing the Value Iteration Algorithm, as
described more in depth by Algorithm 2. The result are the
actions (e.g., cache size increase, etc.) that should be applied
to take the system to an optimal configuration. These actions
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Algorithm 1: Overall Exploration Strategy

Identify the configuration paramters −→p
Define the movement vectors

−→
f

repeat
Pick a random configuration s0

5 Initialize the set of states to be examined s = s0

6 repeat Creation of the Graph G

forall si in s do
s = s − si

forall a applicable in si do
apply a creating child nodes sk

partition sk metrics
update transition function T according
to sk

s = s + sk

end
end

until s = ∅ or depth == l

17 Strategy = Value Iteration Algorithm (G)
scurr = s0, steps = 0

19 repeat Strategy Application
NS = Strategy(scurr)
if ∃si, sj ∈ NS : Strategy(si) �= Strategy(sj)
with i �= j then II kind uncertainty

snext = Simulation Results
if snext /∈ NS then

24 Error −→ Restart All
end

else
snext = NS

end
scurr = snext

check convergence

steps++
until convergence or steps >= l

Simulate last obtained state scurr

num−runs + +
35 s0 = scurr

until num−runs < MAXRUNS or convergence

37 if convergence then
s0 = scurr

enable forbidden actions
Restart from line 5

end
Change Utility Function
Restart All

are applied to the system and simulation is used to solve
uncertainty situations (as shown in Fig. 4). By varying the
objective function [27], it is possible to find a set of optimal
points, hence covering the Pareto curve [3].

The different steps of the exploration algorithm are de-
scribed in higher detail in the following paragraphs.

B. Parameters and Metrics Spaces
Let us consider the set P = {p1, p2, ..., pn} of platform

parameters, where pk can be, for example, the number of
processors, the cache size, the number of threads, etc. Each pk

can be modified by a transformation τ that changes its value

as in [11]. For example, given pk = cache size, τ can consist
of doubling it.

Definition 2: Given a platform configuration
P = {p1, . . . pk, . . . pn}, a transformation τ(pk, �) produces
a configuration P ′ = {p1, . . . p

′
k, . . . pn} where p′

k = pk + �

with � ∈ Q.
To evaluate the effects of a transformation on the ar-

chitecture, we estimate the variations induced on a set of
reference metrics M{m1, .., mi} as intervals; we call such
intervals “movement vectors.” In the following, we consider
the M � {T, E} metric space, where T is the execution time
of an application and E its energy consumption.

C. Movement Vectors

Definition 3: A movement vector is an interval in the
metrics space corresponding to a transformation vector in the
parameter space, and it is defined as

〈f1(τ(pk, �)), f2(τ(pk, �)), ..., fi(τ(pk, �))〉
where i = |M|, and

−→
f = f1, f2, ..., fi functions that determine

the effect of the transformation τ on each metric mj ∈ M.
For example, considering M = {T, E} and the cache size as

the system parameter p, f1 determines how a variation in the
cache size affects execution time and f2 how it affects energy
consumption.

To determine the movement vectors
−→
f for a given pa-

rameter p, it is sufficient to define, for each transformation
τ that can be applied to that parameter, the corresponding
minimum and maximum resulting values in the metrics space.
We use intervals because the exact value of the metrics is
not known and it can only be determined through simulation.
Considering the execution time T , f will not produce Texact

but values Tmin and Tmax such that Tmin ≤ Texact ≤ Tmax with
a certain probability density function. To include effects due
to the interaction of platform parameters that are difficult to
predict, each interval is extended by 10%. With this setup,
in our experiments simulation values have rarely been outside
the estimation intervals. However, even if the estimations are
not correct (so if Texact ≤ Tmin or Texact ≥ Tmax), the algorithm
still leads to the correct result, but it requires a higher number
of simulations to produce the Pareto curve.

In the following, we present three actions that can be applied
to a complex electronic system and the corresponding intervals
in the metric space, in particular we change the number of
processors and their cache size. In our experiments, we used
many more movement vectors that are not presented here in
detail for the sake of brevity.

Notice how all movement vectors should be bound by
designer’s defined limits. The reason for this is to remain
within the technological limits for the system, e.g., it makes no
sense to use an infinite number of processors or an infinitely
large memory.

Let us now define and explain in detail the movement
vectors related to the number of processing elements and the
cache size.

1) Processor Number: It is possible to evaluate the exe-
cution time T and energy E for a given transformation.
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• Add δ to the total number of processors np

τ(np) : np′ = np + δ.

1) Lower bounds

T (np′) = T (np)
np

np′

E(np′) = E(np)

this means that in the best case the speedup is
proportional to the amount of processing power
added to the system, and E remains unchanged.

2) Upper bounds

T (np′) = T (np)

E(np′) = E(np)
np′

np
+ Estandby(np′ − np)

meaning that no speedup is observed in the worst
case, i.e., the added processors were not used. The
energy of the system is increased proportionally to
the amount of computational power introduced in
the system (e.g., going from one to three processors
would triplicate system energy) plus the minimal
standby energy that would be used by the newly
added processors. Estandby is defined as the energy
associated with the execution of a processor in idle
for T (np′).

• Remove δ from the total number of processors np—
τ(np) : np′ = np − δ. For T , this is the reverse of the
previous case, with the upper and lower bound exchanged,
i.e., in the worst case the slowdown time is proportional
to the amount of processing power removed from the
system. For E, the bounds are defined analogously.

1) Lower bound

E(np′) = E(np)
np′

np

meaning that at best, the energy is reduced propor-
tionally to the number of processors removed from
the system.

2) Upper bound

E(np′) = E(np)

the energy of the system remains unchanged.
2) Cache Size: The movement vectors associated with the

cache size can be easily assigned a bound considering that
in the best possible case (a perfect cache) the cache will
generate zero misses, and in the worst case the cache will
always miss. As we are considering a symmetrical parallel
system, we evaluate the cumulative amount of cache hits and
misses for all processors for the sake of simplicity. This is not
a limiting factor for our approach: in case a nonsymmetrical
system is considered, one can use separate movement vectors
for each cache in the system.

It is worth noting that the energy required by a single cache
access strongly depends on its geometry and it is not neces-
sarily proportional to the cache size. We used eCACTI [28] to
determine the energy used by caches in our system, calculating
both dynamic and leakage power. The former is computed as

a cost per access, while the latter depends only on the selected
cache and the estimated simulation time.

Given these considerations, with ch and cm the number of
cache hits and misses, respectively, increasing the cache size
dc by a power of two (i.e., τ(dc) : dc′ = dc · 2) gives the
following.

1) Lower bound

T (np′) = T (np)
ch

ch + cm

E(np′) =

⎧⎪⎨
⎪⎩

E(np)
ch + cm

ch

ifEbest > Ecache

E(np)
Ebest

Ecache
otherwise

meaning that in the best case the cache is perfect and has
no miss, and the overall speed of the system is increased
proportionally to the amount of cache misses removed
from the system. Similarly, the energy of the system
remains proportional to the ratio between the energy
of the new cache size with no misses (Ebest) and the
previous cache energy.1 In case, the new cache requires
higher energy even without misses, only the system level
impact is considered, reducing the energy proportionally
to the amount of misses removed from the system.

2) Upper bound

T (np′) = T (np)

E(np′) =

⎧⎨
⎩

E(np)
Ebest

Ecache
ifEbest > Ecache

E(np) otherwise

meaning that in the worst case, the increased cache had
no effect on T and E is either unmodified (if the new
cache size has lower energy for the same amount of
misses) or proportional to the increased energy use of
the cache.

The movement vectors for decreasing the cache size can
be determined similarly, as it can be done for several other
parameters. It is worth noting that these bounds are very loose,
but they are sufficient for good operation of the algorithm.

In general, configuration parameters of complex hardware
systems are inter-dependent: it is not possible to study the
effect of one of them independently from the others. This is
taken into account by the previous equations: as long as the
global effect produced by a transformation does not exceed the
intervals defined by the upper and lower bounds the algorithm
operates efficiently. In theory, there might be situations in
which transformations produce unforeseen effects (such as a
small change in the cache size consistently slows down the
system because of the increased bus contention): in those cases
the algorithm detects that the bounds were not valid at the first
simulation and restarts from the newly found point. The result
is that the algorithm still finds the Pareto curve, but performing
more simulations.

D. States

Each state of the system graph G encoding the MDP is
identified by the tuple 〈p, m〉, where p is a point in the

1E(np) is the system energy, Ecache is the energy used by the cache only
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Fig. 1. Automatic partitioning of a 2-D metric space and parameter space.

parameter space P and m a point in the metric space M. There
can be the situation where a set X of states share the same
p (i.e., the corresponding systems have the same cache size,
number of processors, etc.) but different values for m (e.g.,
execution time). This is due to the fact that m is obtained
through the application of the movement vectors, thus it is
only an estimation of the real value m′; in particular it is an
interval, as explained in Section III-C. Such interval is then
partitioned to obtain the states 〈p, m′

1〉, 〈p, m′
2〉, etc.

Given the subspace M(C′) in the metric space identified by
the movement vector associated with a transformation τ, we
partition it according to a given accuracy λ and consider the
centroid of each partition for the states of the MDP, as shown
in Fig. 1. We identify each partition as di,a,s: the i-th partition
of the subspace is obtained by applying action a from state
s; in Fig. 1 we have three partitions which are identified as
d1,τ,C, d2,τ,C, and d3,τ,C.

This partitioning introduces an error given by the difference
between the present value of the metrics (still unknown, it
can only be determined through simulation) and the centroid
of the partition that best approximates it. By increasing the
number of partitions we can reduce the error, but it increases
the number of states, leading to an exponential increase in the
solution time of the MDP [9]. Two mechanisms have been
identified to control the trade-off between algorithm accuracy
and number of states.

1) We define λ, the distance encoding the precision of
the proposed algorithm. Each partition d can have a
maximum width of λ · | Mavg |: increasing λ reduces
the number of partitions (states), but it increases the
approximation error. In previous formula, Mavg is the
average of the considered metric: Mavg = Mmin+Mmax

2 .
2) We consider an event horizon l, that represents the

maximum depth of the decision tree G; this bounds
the number of steps considered in the value-iteration
algorithm (Algorithm 2), determining the maximum
number |A|l+1 of examined states, where |A| is the
number of modifications which can be performed on
the platform’s parameters (actions). Tuning l implies a
trade-off between accuracy and exploration speed since:
the smaller is l the more simulations are executed.

E. Actions

The number of actions is one of the dominant factors deter-
mining the complexity of MDPs [9]; for this reason we need to
reduce as much as possible the number of applicable actions in
each state. In our formulation, each action is a transformation

of the platform parameters and, in the following, these two
concepts are considered interchangeable.

Each parameter can be modified by dual transformations

τ+ = τ(k, �)

τ− = τ(k, −�).

The execution of τ+ is made void by the execution of τ−, so
a subsequent execution of the two actions should be avoided:
we already know that we would end up in an already examined
state. For this reason, we keep a list of executed actions which
we use to forbid dual actions. Dual actions are allowed again
only at the end of algorithm execution to make sure that we
are not trapped in a local optimum.

F. Transition Functions

As the metrics space is partitioned, TP(s, a, s′) represents
the probability of reaching a partition with a centroid s′ from
state s by applying action a. This information cannot be
easily determined before simulation, and therefore the initial
probability distribution TPD(s, a) is uniform for all the states
s′ that can be reached from s by applying action a.

During the generation of the decision tree we can, anyway,
correct the probability function. Assuming that we know s, the
actual destination point of a, we can correct the probability
distribution TPD(s, a) by increasing the probability TP(s, a, s)
of ending in s; this is achieved by using “virtual sample
numbers w.”

Definition 4: For each partition ds′,a,s associated with a
state-action tuple 〈s, a〉, we define the virtual sample number
ws′ as the number of times 〈s, a〉 ends in ds′,a,s when traversing
a decision tree from root to leaf.
Transition functions TPD(s, a) for each state-action pair are
refined by adding c ≥ 1 virtual samples to each partition ds′,a,s

during the building of the decision tree associated with the
MDP. Fig. 2 shows an example of this process: for simplicity
we assume that it is possible to execute only one action a (e.g.,
doubling cache size) and that the metric space is composed
only of the execution time.

1) From s action a is applied; the execution time
is estimated with the interval (Tmax − Tmin), with
Tmax − Tmin = 3λTavg , so we generate three states
S1, S2, and S3 with metrics

(
Tmin, Tmin + λTavg

)
,(

Tmin + λTavg , Tmin + 2λTavg

)
, and (Tmin + 2λ, Tmax).

The probability density TPD of ending in any of those
states is uniform.

2) A breadth first exploration is applied on the newly
generated states; we first examine s1, corresponding to
the best case of action a; we add w1 virtual samples
to the best case of the probability function associated
with the edges of action a exiting from the new state s1,
TPD(s1, a). w1 is a user-defined value which determines
how quickly the probability density functions should
be updated according to the expected results of taken
actions. In our experiments, with the particular domain
used, we kept w1 = 1, as other values didn’t produce
any significantly different result (but might in other
domains).
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Fig. 2. Evolution of TP(si, a) as the decision tree is built: virtual samples
change the probability of ending in a partition di. Depending on the chosen
partition (d1, d2, or d3), we increment the corresponding wi and update the
probability distribution.

3) The same concept is applied to the average and worst
case, thus generating TPD(s2, a) and TPD(s3, a).

4) Using the newly created probability functions we pro-
ceed in the exploration this time starting from s1, s2,
and s3; new states are generated by applying action a

and their probability function TPD is updated. When
the depth of the tree reaches l, the event horizon, the
exploration terminates.

This defines a more realistic TP as the algorithm goes on with
the exploration, while maintaining the Markov property. To
simplify the presentation, the proposed example has the same
number of edges exiting from every node; the concept can be
easily extended to the general case of a variable number of
edges by appropriately redistributing the virtual samples.

G. Exploration Algorithm

As described in Algorithm 1, the exploration process is
composed of four steps: generation of the decision tree (line 6),
solution of the MDP (lines 6–17), application of the trans-
formations (lines 19–35), restart and optimality verification
(line 37).

The first step consists of the generation of the graph G =
{S, E} that describes the behavior of the MDP. A node s ∈ S

in the graph represents a state of the system, and in particular
a tuple 〈P, M〉, where P is a point in the parameters space and
M is a point in the metrics space. The fact that dual actions
are not enabled, frees G from cyclic structures, simplifying
the problem. An edge e ∈ E is defined as

e = 〈si, sj, a, TP(si, a, sj)〉
and it represents the transition probability (given by the tran-
sition function TP(·)) from state si to state sj when applying
action a.

At the beginning of the exploration, the initial values of
the parameters P are chosen randomly and the corresponding
metrics M are determined via simulation, building the root
node s0. Starting from s0, all possible actions are applied,
generating the configurations that differ from s0 by one pa-
rameter. For each configuration, movement vectors identify

Algorithm 2: The strategy evaluation algorithm
initialize V (s) = 0
repeat

forall s ∈ S do
forall a ∈ A do

Qπ(s, a):=
∑
s′∈S

TP
(
s, a, s′)[R (

s, a, s′)+γVπ
(
s′)]

end
Vπ′

(s) := maxaQ
π(s, a)

end
until strategy converges

the destination subspace in the metric space (in our case they
identify the estimated range for power consumption and exe-
cution speed). This is partitioned according to the maximum
accuracy λ defined for the exploration. The centroid associated
with each partition, together with the corresponding parameter
configuration P , generates a new child node, and the difference
between parent and child metric defines the reward R of
that particular action. Last, for each state si, the probability
TPi(si, a, sk) is generated according to the procedure described
in Section III-F. The decision tree is progressively built by
iterating on the newly generated nodes breadth-first, until
either it is not possible to apply any other action on the leaf
nodes or the l-th level (our event horizon) is reached. A sample
graph is shown in Fig. 3: each action produces an interval in
the metrics and various states are generated by partitioning
such intervals according to the desired accuracy λ.

The second step solves the MDP using the value iteration
algorithm [9], as described by Algorithm 2. This phase ends
when, for each state s the difference between two successive
cumulative returns Vπ′

(s) is smaller than an arbitrary small
value ε, so when there is no substantial improvement of the
return. At the end the set of k < state, action > pairs (i.e.,
the strategy π) to be performed from the initial state in order
to obtain an optimal system configuration is identified. Note
how k is bound by the event horizon l: there cannot be more
actions than the maximum depth of the decision tree [9]. At
this point of the algorithm we are evaluating the utility function
T 1−αĖα, with a given α; as such, optimal configuration means
the configuration corresponding to the minimum of the utility
function.

In the third step, the actions identified in the previous
stage are applied to the system and the obtained metrics are
evaluated after each of those actions. Simulation is used for the
evaluation only when strictly necessary: it will be performed
only if an action brings the system to a set of states (as
opposed to a single state) and the strategy maps different
actions to each of those states. Remember that an action is a
modification to the platform parameters; the application of the
action generates, in general, an interval in the metrics space:
if this interval is smaller than the desired accuracy we have a
single state, otherwise the action takes us into multiple states.

In other words, if the strategy suggests action a for a given
state 〈P, M〉, three conditions are possible, as shown in Fig. 4.
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Fig. 3. Sample of decision tree generated by the proposed algorithm: the
metric values indicated in the states represent the center of the metric intervals.
Action 6 generates only one state as the produced interval is smaller than the
accuracy expressed by λ, while Action 0 generated a much larger interval
which needs to be spread over four states.

Fig. 4. (a) Uncertainty of I kind. (b) Uncertainty of II kind.

1) a can lead to one state only (i.e., to an interval in the
metrics space smaller than λ). The action is deterministic
within the chosen accuracy λ and no simulation is
necessary.

2) a leads to a set of states (e.g., s1 and s2), and the
computed strategy maps the same action to all of them
(i.e., the action b should be executed from both s1 and
s2). This means that whichever state the system will end
into, the same next action will be chosen, and therefore it
is not useful to verify it by simulation. This is called an
uncertainty of the first kind and it is shown in Fig. 4(a).

3) a produces more than one state, and they are mapped
to two or more different actions. Only in this case it
is important to discriminate which state the system will
actually reach, thus a simulation is performed. This is
called an uncertainty of the second kind; in Fig. 4(b),
the strategy maps actions b and c to the states s1 and
s2 obtained by the application of action a: simulation is
then needed to determine if we are in s1 (thus action b

should be applied) or we are in s2 and action c should
be used.

Every time an uncertainty condition of the second kind arises,
the algorithm is stopped and a simulation is performed, fixing
its position in the metrics space. It might be that, in case
movement vectors are not properly defined, no estimated
interval corresponds to the true values of the metrics obtained
through simulation. In this case, the correspondence between
the simulated configuration ps and the obtained metric ms is
cached and the whole exploration algorithm restarted. When
the algorithm reencounters ps estimation is not employed but,
instead, the true metric value ms is used, and the exploration
can proceed correctly.

Note that when an uncertainty of the first kind arises,
exploration continues not on a single state, but on a set

S =
{
s′, s′′, etc.

}
; the same considerations still hold, keeping

in mind that applying the strategy to the set means applying
the strategy to each state contained in the set.

The application of the strategy goes on until either all
actions are applied or an optimal configuration is found (when
the algorithm converges, so when no action gives a gain greater
than a user defined value ε).

Steps one, two, and three are repeated until either conver-
gence has been reached during the strategy application or the
maximum number of runs has been performed.

In the fourth step, an additional restart is performed to
check that the exploration is not trapped in a local minimum:
a new graph Gnew is created considering the last optimal
configuration as the initial node and with forbidden actions
enabled: actions that were previously applied can be reverted
(e.g., if cache size was increased during exploration, now it
can be decreased). The MDP encoded by Gnew is then solved.

H. Pareto Search

The algorithm works with utility functions [29] that have
the utility property [9] (i.e., functions that map states to real
numbers); in the context of multiobjective optimization such
functions are also called scalarizing functions. To have the
algorithm generate an approximate Pareto curve, as opposed
to generating a single point, it must be possible to perform the
exploration in a multivariate environment. This is obtained by
repeated applications of the algorithm, changing the scalariz-
ing function at every application so that it covers the whole
span of the metric space of interest; this technique, called
parameter variation is often used to generate the Pareto curve
of multiobjective optimization problems [27]. For instance, in
the experiments detailed in the following, the design space
was explored, similarly to what described in [11], using the
scalarizing function T 1−α·Eα with 0 ≤ α ≤ 1. We build a set A

of n points uniformly distributed in [0, 1] (e.g., A = 0, 0.5, 1),
each of which is used as the α value for one run of the
algorithm. This means that |A| = 6 will require six consecutive
runs of the algorithm to determine a Pareto curve. The optimal
|A| to be used has been determined experimentally, as detailed
in Section IV.

During the exploration, all points simulated by the algorithm
are added to the nondominated set if and only if they are not
Pareto-covered by other points. At the end of the scan of the
design space, the nondominated set constitutes the estimation
of the Pareto curve.

IV. Experimental Results

The proposed methodology has been validated using two
large applications and a small benchmark for which exhaustive
search was possible. The two applications are ffmpeg, a video
transcoder used to convert a small clip from MPEG-1 to
MPEG-4, and pigz, a parallel compression algorithm. The
small benchmark consists of an implementation of Bailey’s
6-step FFT algorithm (fft6).

Our experiments have been planned to:
1) determine the number of simulations required by the

algorithm to obtain an approximate Pareto-set;
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Fig. 5. Average accuracy (ADRS) with varying values of (a) ε and (b) λ. The numbers are the average number of evaluations performed for the exploration.

TABLE I

Design Space for the Experimental Platform

Parameter From To
Number of PEs 1 8
PE frequency 100 MHz 500 MHz
L1 cache size 1 K 32 K
Bus Latency 10 ns 100 ns
Memory latency 10 ns 100 ns
L1 cache policy LRU, LRR, RANDOM

2) quantify the quality of the Pareto-set found by the
algorithm;

3) compare the results with state-of-the-art optimization
algorithms;

4) identify and respond to possible objections to the algo-
rithm performance.

For this purpose, the ReSP [30] open-source simulation
environment was used to perform the exploration of the
aforementioned applications on a chip-multiprocessor plat-
form. The platform has been explored using the parameters
listed in Table I, with a resulting design space of 8640
points.2 Although the design space is not extremely large,
it is comparable with similar works (e.g., [12] uses 6144
points) and the exhaustive exploration of any medium/large
application would require an unfeasibly long simulation time
(e.g., roughly two months for ffmpeg) in any case. Even the
full exploration of the simple fft6 benchmark required six
days of uninterrupted simulation. To gather sufficient data for
a statistical analysis the fft6 benchmark was run 10 times
for each exploration algorithm. This number was reduced for
ffmpeg and pigz due to the unfeasibly long simulation times,
ending with a number of runs between two and ten for each
algorithm on all benchmarks.

The proposed algorithm was compared with ten state-of-
the-art multiobjective optimization algorithms: pareto simu-
lated annealing (PSA), multiple objective simulated annealing
(MOSA), Serafini’s multiple objective simulated annealing
(SMOSA), multiple objective genetic local search (MOGLS),
Ishibuchi’s and Murata’s multiple objective genetic local
search (IMMOGLS), Pareto memetic algorithm (PMA), multi-

2It is worth noting that bus and memory latency are not realistic parameters,
but they enlarge the design space to better test the proposed algorithm

ple objective multiple start local search, strength Pareto evolu-
tionary algorithm (SPEA), nondominated sorting genetic algo-
rithm (NSGA), and controlled nondominated sorting genetic
algorithm (referred to as NSGA2). The MOMHLib++ [31]
library was used in this paper as a reference implementation
of such algorithms.

A. Estimation of the Number of Evaluations

The number of evaluations needed to obtain an approximate
Pareto-set for the proposed algorithm depends on the number
of available actions, on the size of their bounds, and on the
algorithm parameters l (the event horizon), ε (the convergence
margin), λ (the accuracy factor), and |A| (the number of α

values).
Theoretically, the higher l, the lower the number of sim-

ulations needed to reach convergence with the current α

setting, but the higher the memory requirement. In our im-
plementation, l is dynamically set according to the available
host memory and it remained set to three in most of our
experiments (going to four in few cases).

To determine the best values for the parameters λ and ε and
to observe how they affect the performance of the proposed
algorithm, we tested the exploration of the fft6 benchmark
with varying values of λ and ε, assessing accuracy [using
average distance from reference set (ADRS), see Section IV-B]
and number of evaluations. Fig. 5(a) shows that lowering ε

quickly increases the accuracy, with a sub-linear increase in
the number of evaluations. It is worth noting that below 10−4,
there is no evidence of significant difference between values
of ε. Fig. 5(b) shows similar results for λ, with no evidence
of significant difference for values below 0.4.

Nevertheless, ε = 10−6 and λ = 0.3 were chosen to
maximize the algorithm precision and to assess the algorithm
performance in worst case conditions. Even in these condi-
tions, as our experiments show in the following, the number
of simulations required is much lower than those required by
existing alternatives.

A, the optimal set of α values was determined using the fft6
benchmark and running the mdp algorithm with an increasing
number of α values evenly spaced between zero and one. Fig. 6
shows two box plots of the number of evaluations and number
of pareto points found with varying |A|. In the box plots, the
dark line is the median, the boxes represent the range between
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Fig. 6. Boxplots of (a) number of evaluations and (b) number of Pareto points found with varying |A|, the α set size. The dark line is the median, the boxes
represent the range between the 25th and 75th quartiles and the whiskers are the smallest and largest nonoutlier observations.

Fig. 7. Average evaluations for algorithm convergence.

the 25th and 75th quartiles, and the whiskers are the smallest
and largest nonoutlier observations.

With |A| ≤ 3, the number of found Pareto points has high
variability, due to the fact that it strongly depends on the
starting point of the algorithm. As |A| increases number
of found points converges to the maximum value, with
no statistically significant difference for |A| > 5. Fig. 6(a)
that the number of evaluations (i.e., simulations) grows
almost logarithmically, but with high variability due to the
dependency on the random starting point. This lead to the
selection of |A| = 6 (i.e A = {0, 0.2, 0.4, 0.6, 0.8, 1}), which
guarantees a median of 40 simulations while finding the
maximum number of Pareto points.

Fig. 7 shows how the proposed approach (indicated as mdp)
compares with other algorithms in terms of number of simula-
tions; note that it is possible to use the number of simulations,
and not the actual execution time, as a mean of comparison
as the execution times of the state-of-the-art algorithms and
of mdp are negligible with respect to the simulation time.
We tried to our best to find the optimal settings for each
algorithm for the design space under consideration, but, still,
mdp uses ten times fewer evaluations than most algorithms,
obtaining comparable, or better, results. The variability of
the number of evaluations is very limited, showing stable
convergence for all algorithms on all benchmarks.

The number of Pareto points found by mdp using |A| = 6 is
comparable with the one found by other algorithms, running a

Fig. 8. Number of Pareto points found by each algorithm as a ratio to the
global average over all algorithms.

much higher number of simulations. Fig. 8 shows the number
of Pareto points found by each algorithm, normalized by the
average found for each benchmark to allow global comparison.
mdp provides a higher-than-average number of points for
ffmpeg and fft6 (being the highest for fft6 and the second
highest for ffmpeg) and average for pigz. The best column
of Fig. 8 shows the size of the Pareto-set found over all the
executed simulations (which means exhaustive search for the
fft6 benchmark).

In order to verify the effect of the accuracy of the bounds
provided, we artificially increased their size 5, 10, and 20%,
but results do not show any significant difference in the
number of simulations.

Even when comparing mdp with recent literature, to the
best of the author’s knowledge, no results could be found with
such a low-number of evaluations and such good estimation
of the Pareto curve. The most promising results come from
the use of DoE statistical techniques, for example [12] uses
a minimum of 34 evaluations to find a single optimal point
(maximum performance with a size constraint) and [18] needs
∼100 evaluations to determine the Pareto-set in the best case.

B. Quality of the Resulting Approximate Pareto-Set

In addition to obtaining the size of the approximate Pareto-
set as in Fig. 8, it is necessary to measure the quality of such
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Fig. 9. (a) Non-uniformity, (b) concentration, and (c) ADRS metrics comparing mdp with state-of-the-art algorithms. In the boxplots, the black lines are the
median, the square dot is the average, the box is the 25–75 interquartile range, the wiskers are the observed maximum and minimum, and the circles are
outliers. (d) Average ADRS per algorithm with Studentized 95% confidence interval.

sets. The simplest comparison method among approximate
Pareto-sets consists of using the dominance relation presented
in [3]. Unfortunately, as it only defines a relative ordering
among the approximation-sets, there might be situations in
which it is not applicable; moreover, it does not allow quantifi-
cation of the relative quality of the approximation-sets. In our
situation, it reports that the set obtained with psa is dominated
by mdp for the fft6 and ffmpeg benchmarks and that the ones
of nsga is dominated by mdp only for the fft6 benchamrk; all
the other sets are incomparable, they cannot be ordered by the
Pareto-dominance relation.

We use three indicators, presented in [32] and [33], to
compare the relative quality of the approximate Pareto-set
obtained by mdp and other state-of-the-art algorithms.

1) ADRS—The ADRS [34] is used to compare the approx-
imated Pareto-sets with the best Pareto-set found com-
bining the results of all experiments. This approximates
the distance of a considered set from the Pareto-optimal
front, and should be minimized.

2) Non-uniformity—We measure how solutions are dis-
tributed in the design space. Lower non-uniformity
means a more evenly-distributed approximate Pareto-set
that better estimates the optimal Pareto-set.

3) Concentration—We measure the span of each Pareto-set
with respect to the range of the objectives. The lower
the concentration, the higher the spread of the Pareto-set
and the better coverage of the range of objectives.

Fig. 9 shows the comparison of the Pareto-set evaluation
metrics using a boxplot. We compared the results of all
algorithms using statistical hypothesis testing [17]. In our case,
the null hypothesis (i.e., what our tests are trying to confute) is
that all algorithms behave in the same way on average, and the
alternative hypothesis is that the algorithms have a different
behavior on average.

Concerning non-uniformity, all algorithms behave similarly
on the available benchmarks, as shown in Fig. 9(a), with
the exclusion of a few outliers. We performed an analysis
of variance (ANOVA) [17] using a 95% confidence interval,
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Fig. 10. Average approximate Pareto-set for PMA (the most accurate algo-
rithm), mdp, and NSGA (the least accurate) for the fft6 benchmark.

assuming different unknown variances for each algorithm.
The F-test (used to determine if any statistically significant
difference between averages is present) returns positive with a
p-value3 in the order of 0.001, meaning that the current results
are outside the 95% confidence range for the null hypothesis.

Fig. 9(b) shows that concentration has no significant differ-
ence between all the algorithms: the F-test reported differences
with p = 0.06, meaning that there is no substantial evidence
at 95% confidence that the algorithms have different average
behavior, with the only exception in the very high variability
of SMOSA.

The accuracy of mdp was measured as the ADRS; the
reference set consists of the Pareto-set obtained after collect-
ing all simulation results from all algorithms, or exhaustive
simulation in the case of fft6. ANOVA reports that algorithms
have different average ADRS with a p-value close to zero, and
Fig. 9(c) shows the boxplot of ADRS per algorithm, ordered
by average. Using repeated Welch’s t-tests [17] between mdp
and all the other algorithms, evidence suggests that mdp is
one of the most accurate algorithms, being surpassed only by
PMA, IMMOGLS, and MOGLS, three algorithms requiring a
number of simulations two orders of magnitude higher than
mdp. When considering effect size, the difference between
PMA (the best algorithm) and MDP is marginal, between 0.9%
and 3.1% (p = 0.007).

A more easily-appreciated comparison of all the algorithms
is shown in Fig. 9(d), where all algorithms are ordered by
increasing average ADRS with 95% confidence interval error
bars: if confidence intervals are not intersecting, evidence sug-
gests different average behavior. To exemplify the differences
in ADSR, the average approximate Pareto-set for PMA (the
most accurate algorithm), mdp and NSGA (the least accurate)
for the fft6 benchmark are presented in Fig. 10.

In conclusion, although none of the algorithms fully dom-
inates any other on average, mdp outperforms most of them
for accuracy, with similar concentration and non-uniformity,
using one order of magnitude fewer simulations. The three
marginally more accurate algorithms require two orders of
mangnitude more evaluations.

3The p-value is the probability of a set of observations given that the null
hypothesis is true, i.e., the probability of the current results if all algorithms
had the same behavior on average

C. Possible Objections to the Proposed Algorithm

At first glance, one might come up with a number of
possible objections to the proposed algorithms. Deeper anal-
ysis, however, shows that these objections do not stand the
experimental results of this paper. To anticipate the reader’s
concern and simplify the understanding of this paper we list
here the most common objections and their response.

1) Parameters cannot be considered separately, the bounds
will be too complex to manage. Although it is true that
parameters are interacting, using bounds has exactly the
purpose of including every possible interaction within
the bounds. Using the simple movement vectors pre-
sented in Section III-C still guarantees state-of-the-art
accuracy with a fraction of the simulation time. Even
if the bounds do not contain the true metric value,
mdp still operates correctly, even though requiring more
simulations.

2) There is no guarantee the algorithm will scale with
larger design spaces. It is true that the number of
nodes in the state graph can grow exponentially with the
number of actions, but using the λ parameter one can
control the growth, reducing the number of generated
nodes, trading-off a larger number of simulations. As
long as there is enough memory for an event horizon
greater than two, we believe mdp will perform better
than other pseudo-random algorithms.

3) There is no clear differentiation between algorithms.
The results we obtained are based on a solid statistical
foundation, and provide no clear evidence of a different
behavior for most algorithms in terms of accuracy, non-
uniformity, and concentration. However, there is a clear
difference in terms of simulation time, and this is where
the proposed algorithm really shines, using up to two
orders of magnitude fewer simulations.

V. Conclusion

This paper presented an application of decision theory,
through the use of MDP, to architectural multivariate explo-
ration for platform-based designs. The proposed algorithm ex-
ploits the domain knowledge intrinsic in a hardware platform
to reduce (more than one order of magnitude) the number of
simulations needed for exploration. The proposed technique
has been applied to two multimedia industrial applications
(the ffmpeg transcoder and the parallel pigz compression
algorithm) and to an fft6 kernel. Results show an excellent
overall exploration speedup (> 80%) and very good accuracy
of the discovered Pareto curve. Future work includes the
combination of pseudo-random techniques to MDP to exploit
the best characteristics from both worlds.
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