Abstract—This paper presents a novel approach to verify Single-Event-Upset (SEU) protection based on smart behavioral simulation. Our analysis does not require a testbench and can perform full, exhaustive coverage within less than an hour for typical designs.

Index Terms—Triplication verification, SEU Analysis, Behavioral simulation, netlist conversion, Graph Representation,

I. INTRODUCTION

Hardening circuits against radiation effects that occur in space is a complex task. Without being protected by the earth’s magnetic field, integrated circuits are exposed to ionizing radiation, which can disrupt the circuits’ behavior.

This paper focuses on the so called Single-Event-Upset (SEU) effects, or soft errors, usually caused by the transit of a single ionizing particle through the chip. This particle can upset storage elements and change their value from zero to one or vice versa by modifying the charge at a storage node [1]. Protection against this effect can be done in several ways, and in particular this work concentrates on the protection based on triple modular redundancy (TMR), consisting in the triplication of every storage element combined with majority voting logic [2].

This protection can be either inserted during high level design [3] or at a later stage by automatic netlist modification. Typically, after a new ASIC is produced for the space market, it undergoes a strict test campaign, including costly and time consuming radiation tests using particle accelerators. When a problem arises during a radiation test campaign, it is already too late; the first prototype ASICs have been manufactured and the whole fabrication process needs to be rerun after fixing the netlist. It is desirable to detect any problems before fabrication, therefore several software [4]–[7] and hardware-based [8] tools for fault injection and verification were proposed in the past. However, such tools either do not provide full coverage or require extremely long simulation and/or execution times.

This paper presents a novel way to analyze the SEU sensitivity of a given netlist by taking a gate-level netlist as input and executing a smart behavioral simulation, and verifying the correctness of the implemented countermeasures against SEUs. To perform a fast analysis, we use a divide et impera approach, transforming the input netlist into a directed graph representation and analyzing smaller subgraphs. Results show that verifying TMR on a 40k gates netlist is possible within around half a hour on a standard PC. Another advantage over other traditional simulation/verification methods is that our approach does not rely on a testbench, allowing a full coverage test.

This paper is organized as follows: previous works on the subject are introduced in Section II; Section III present the base idea of the proposed algorithms; Section IV details the algorithm together with necessary definitions, its implementation and its complexity; experimental results are shown in Section V, and Section VI draws some concluding remarks.

II. PREVIOUS WORK

In the past, several different approaches have been proposed for design verification against soft errors. These approaches can be divided in two kinds: fault injection simulation and formal verification.

Fault injection simulators run a given testbench on the design under test (DUT), flipping either randomly or specifically targeted bits. The outputs of the DUT are then compared with a golden model running the same testbench, and discrepancies are reported. Fault injection simulators come in two different flavors: on the one side there are software-based simulators like MEFISTO-L [5] or SST [6] (which is based on Modelsim), that allow full observability and control of the simulated netlist. These tools are marred by extremely slow low-level simulation, requiring hours or days of simulation, without any guarantee of full coverage. On the other hand some tools use special hardware to speed up the simulation cycle, such as FTS-Unshades [8], which uses partial reconfiguration of an FPGA to introduce single bit-flips (simulating SEUs) in a fast manner without requiring modifications of the DUT. Although this provides a consistent speedup compared to the software based approach, it is still infeasible to run full verification of a given design, which requires the injection of bit flips in all possible Flip-Flops (FFs) at any possible time during the simulation. In addition, the results of these approaches strongly depend on the testbench used.

Formal verification against soft-errors was introduced by [9]: the idea is to merge a formal model of the DUT with a soft error model, proving a given set of properties on the merged model. This requires a formal model of the DUT and a complete and exhaustive set of formally defined properties to be proven. In other words, the main issue of this formal approach is that the coverage is as good as the definition of such properties.

This work tries to overcome these limitations and provide full SEU protection verification of a TMR-based DUT with reasonable simulation time. The idea presented in this paper
can be classified as a fault-injection simulation, but follows a
different approach with respect to previous work: instead of
trying to simulate the whole circuit at once and doing a timing
accurate simulation we focus on the behavioral simulation of
small submodules, extracted by automatic analysis of the
DUT internal structure, with the specific goal of detecting any
FF/voter pairs that are susceptible to SEUs.

III. PROPOSED APPROACH
The starting point of our analysis is a radiation hardened
circuit, protected by triplication and voting (TMR [2]). The
objective of this analysis is finding any FFs that are not
adequately protected.

Starting from a given design with \(n \) FFs, a naive testing
approach for SEU-susceptible FFs would require testing all \(2^n \)
possible configurations, for all of the \(m \) time instants of a given
testbench. This would lead to an impractically long simulation
time as typical as systems consist of several thousand FFs.

Our approach uses the properties of the DUT in order to
split the whole system into smaller submodules. Those small
submodules can be analyzed independently, allowing a full test
to be carried out in a reasonable timeframe.

The DUT is initially converted into a directed graph rep-
resentation, based on a post-synthesis gate-level netlist (e.g.
an EDIF file or a verilog netlist). This graph representation
consists of nodes (modeling logic gates) and edges describing
wires or interconnections between the gates. Using this repre-
sentation, each FF \(i \) in the DUT is selected, and the subgraph
of FFs connected to \(i \)'s input is calculated. Then, all valid
start configurations (see Definition 6) for the FFs belonging to
this subgraph are calculated, simulating all possible injections
on the generated subgraph. For every injection, the result is
compared to fault-free simulation: if the results differ, the FF
\(i \) is marked as susceptible to SEUs.

We implemented a prototype of the algorithm relying on
some assumptions: the whole circuit is driven by only one
clock and there are no loops inside logic without a storage
element being involved. Furthermore, it is assumed that there
are no signal conflicts inside the netlist (i.e., two-valued logic)
and that there are no timing violations. Finally, we assume
that all FFs have one data input, one clock source, and all
the triplets have separate reset and set lines. For the sake of
simplicity, Single Event Effects (SEEs) on the reset and set
lines are not considered, but they could be analyzed in a similar
way.

IV. MATHEMATICAL MODEL
To convert the netlist describing the circuit into a graph, we
need to introduce a special directed graph structure. The nodes
of this graph have indexed inputs and are associated with a
logic function and a value, as outlined in the following. We
assume without loss of generality that every gate has just one
output. Gates that have \(n \neq 1 \) outputs are converted into \(n \)
nodes having the same inputs, each representing one output.

Taking this into account the netlist can be easily converted
into a directed graph structure

Definition 1: A circuit graph \(G \) is defined as a tuple
\(\{V, E, S, F\} \), where:
- \(V \) is a set of nodes (representing logic gates)
- \(E \subseteq V \times V \times \mathbb{N}_0 \) is a set of edges (representing
interconnection wires)
- \(S \subseteq V \times \{0, 1\} \) is a set of values (representing the node
values)
- \(F \subseteq V \times T \) is the set of logic functions associated with
each node, where \(T \) is the set of computable boolean
functions

Every node \(v \in V \) has 1 output and \(\text{num}_\text{inputs}(v) \subseteq \mathbb{N}_0 \)
inputs. The set of valid input indices for a node \(v \in V \) is
given by
\[
N_v = \{1, ..., \text{num}_\text{inputs}(v)\}
\]
An edge \(e = (x, y, i) \in E \) with \(x, y \in V \) and \(i \in N_y \)
represents a connection from node \(x \) to the input \(i \) of node \(y \).
Assuming that the input circuit is free of driving conflicts, the
circuit graph fullfills the property:
\[
\forall v, w, x \in V, \forall i \in N_v : \quad v \neq w \land (w, x, i) \in E \implies (v, x, i) \notin E
\]
which means that any given input of a node is connected to
a single node output. We also assume that there are no
unconnected inputs in the circuit, which translates to the
property:
\[
\forall x \in V, \forall i \in N_x, \exists w \in V : (w, x, i) \in E
\]
(1)
To describe the algorithm, we need to define predicates that
represent node properties.

Definition 2: The set of direct predecessors of node \(x \), i.e.
the set of nodes with a direct connection from their output to
one of \(x \) inputs is defined as:
\[
\text{pre}(x) = \{w \mid \exists i \in N_x : (w, x, i) \in E\}
\]
Definition 3: Let us define the predicate \(\text{is}_f(x) \) for a given
node \(x \in V \), which determines if \(x \) represents a FF:
\[
\text{is}_f(x) = \{ \begin{array}{ll}
\text{true} & \text{if } x \in V \text{ is a FF or in-/output node} \\
\text{false} & \text{else}
\end{array}
\]
For the sake of simplicity, top-level in-/outputs are considered
as FFs with no inputs. The set of nodes that represent FFs is:
\[
V_{FF} = \{x \mid \forall x \in V, \text{is}_f(x)\}
\]
Definition 4: We define the set of nodes which are directly
and indirectly connected to the inputs of a given node \(x \in V \) as
the smallest set \(\text{pre}_f(s)(x) \) for which the following properties
hold \(\forall w \in \text{pre}(x) \):
\[
\text{is}_f(w) \implies w \in \text{pre}_f(s)(x)
\]
\[
\neg \text{is}_f(w) \land w \in \text{pre}_f(s)(w) \implies v \in \text{pre}_f(s)(x)
\]
Having defined the FFs as just having one input (see section
III) we can define the driving node for a given FF as
Definition 5: A driver for \(FF \in V_{FF} \) is defined as:
\[
\text{driver}(x) = \{y \mid (y, x, 1) \in E\}
Finally, we need the operators to compute the values associated with each node:

Definition 6: The value of a node $x \in V$ is given by the `eval` operator, defined as:

$$
eval(x) = \begin{cases}
\text{eval}_{FF}(x) & \text{if } x \in V_{FF} \\
\text{eval}_{L}(x) & \text{else}
\end{cases}$$

where eval_{FF} returns the value stored in FF x:

$$\text{eval}_{FF}(x) = \{a \mid (x, a) \in S\}$$

and eval_{L} computes the value of logic (i.e., non FF) nodes, which depends on the node input values:

$$\text{eval}_{L}(x) = \{f(\text{eval}(y_1), ..., \text{eval}(y_n)) \mid (x, f) \in F, y_i \in \text{pre}(x)\}$$

We also define the **configuration** of a set of FFs $x_i \in V_{FF}$ as

$$\text{config}(x_1, ..., x_n) = (\text{eval}(x_1), ..., \text{eval}(x_n))$$

A configuration $\text{config}(x_1, ..., x_n)$ is defined as **valid** when

$$\forall x_1, ..., x_n \in V_{FF}, \forall i \in N_{x_1}, \forall j \in N_{x_1} : \text{driver}(x_i) = \text{driver}(x_j) \implies \text{eval}(x_i) = \text{eval}(x_j)$$

which means that if two FF have the same driver, they must share the same value, ruling out impossible FF values.

A. Simulation Algorithm

As stated in section III the input of our algorithm is a radiation hardened circuit protected by triplication. Before starting the analysis, we optimize our description by removing for us unnecessary elements as one-to-one buffer gates. This is done during netlist parsing or by graph inspection. As such buffers do not manipulate the logic value of a signal; it is easy to see that the logic functions are not changed when those buffers are removed.

If the TMR implementation were working correctly, a single bit-flip in one FF should not cause another FF to change its value. If a faulty triplicated FF/voter pair exists, there is at least one FF whose value can be changed by a single bit-flip in another FF. This is true only if the configuration before the bit-flip injection was a valid configuration. The algorithm tries to find such FFs, and if none is found, TMR is correctly implemented.

The main idea of the test algorithm is that complexity can be reduced by checking only small submodules instead of the whole system. In order to do this, we observe that a bit-flip in one FF can only distribute to the next FF during the current clock cycle. It is then possible to determine the set of all FFs which could potentially influence a given FF $x \in V_{FF}$, i.e. $\text{pre}_f_{ffs}(x)$.

The algorithm takes each FF x_i and determines the set of FF that are connected to it via logic only (no memory elements), and tests every possible bit flip for every possible valid configuration. If any of these bit flips is able to change x_i stored value, then the algorithm detected a fault in the TMR implementation. More formally, Algorithm 1 describes this behavior in pseudocode (where `abort` interrupts execution and shows a message to the user). As the analysis has to be performed for all $x \in V_{FF}$, simulation times might be excessively long. To reduce runtime, this algorithm has to be extended to handle large sets of driving FFs $(y_1, ..., y_k)$. If the number of elements $t = |\text{pre}_f_{ffs}(x)|$ in such a set exceeds a given threshold, the graph will be split into smaller subgraphs until the threshold is reached, as outlined by Algorithm 2.

Algorithm 1: analyze algorithm

```plaintext
input : a node $x \in V$
1. $(y_1, ..., y_k) \leftarrow \text{pre}_f_{ffs}(x)$;
2. foreach valid $c \in \text{config}(y_1, ..., y_k)$ do
3.   for $i \leftarrow 1$ to $k$ do
4.     value$(y_i) \leftarrow c_i$;
5.   end
6. init_value $\leftarrow$ eval$_{FF}(x)$;
7. foreach 1-bit mutation $c'$ of $c$ do
8.   for $i \leftarrow 1$ to $k$ do
9.     value$(y_i) \leftarrow c_i'$;
10. end
11. mut_value $\leftarrow$ eval$_{FF}(x)$;
12. if mut_value $\neq$ init_value then
13.     abort (FF $x$ sensitive to SEUs);
14. end
15. end
```

Input: a node $x \in V$

1. $\text{if } |\text{pre}_f_{ffs}(x)| < \text{threshold} \text{ then}$
2. else
3. $\text{foreach node } y \in \text{pre}(x) \text{ do}$
4. $\text{split_analyze}(x)$;
5. end
6. end

Algorithm 2: split_analyze algorithm

Since we consider post-synthesis netlists, it is possible that voting logic has been embedded into other logic elements during optimization. This means that splitting the graph might result in some false positives (of faulty TMR implementation) because the splitting could have destroyed the voting logic. However, choosing the threshold as a trade-off between run-time and the risk of false positives gives good results in our experiments. It is worth noting that this will never hide any SEU sensitive parts: if TMR is not properly implemented, it will be detected. In case the algorithm reports a SEU-sensitive FF, testing with a higher threshold value (or manual inspection) can identify if it represents a false positive.

B. Algorithm complexity analysis

Given $m = |V|$ and $n = |V_{FF}|$, the total number of gates and FFs, respectively, an exhaustive search would result in
Determining a subgraph to be analyzed for every node \(x \in V_{FF} \), gives \(n \) subgraphs to verify. Using the properties presented in section IV-A, the algorithm has to check \(p_x = |\text{pre}_{FF}s(x)| \) FFs, with typical designs showing that in general \(p_x \ll n \). As described in section IV-A, the algorithm limits \(p_x \) to a given threshold \(t \) by splitting the graph into subgraphs. Therefore there are less than 2\(^t\) valid configurations we have to evaluate for every subgraph (assuming FF triplication, we expect less than 2\(^t\) valid configurations). As we are testing one bit-flip at a time, we need to perform \(t \) injections on every valid configuration. Obviously, the number of subgraphs obtained after splitting and their sizes cannot exceed the total number of gates \(m \), resulting in less than \(n \cdot 2^t \cdot t \cdot m \) subgraph evaluations. Overall, the algorithm performs \(O(nm^2) \) node evaluations, showing polynomial behavior and outperforming other exponential verification methods.

V. EXPERIMENTAL RESULTS

The algorithm presented in Section IV-A was implemented as a C++ program called InFault (Intelligent Fault analysis). In order to convert a given netlist into a graph representation a custom parser and converter was written. Currently the program supports Xilinx EDIF files and Verilog gate-level netlist files. The parser can be easily extended to support other input files.

The graph itself was implemented in a custom linked graph structure, using pointers whenever possible to maximize speed. For every gate in the netlist library, a node class is built using a Perl script using a Verilog ASIC library description as input. The library for the Xilinx EDIF was written manually and implements only a small subset of nodes necessary for the design in our tests. In order to ease debugging, every node also stores some additional data like the name of the gate in the original netlist.

The implementation was tested on netlists describing sub-modules of a radiation hardened LEON2-FT processor [10] on a normal desktop PC (2.66GHz Intel Core Duo) with a memory usage smaller than 100MB. Table I shows the results of such tests, and compares the runtime with the expected runtime of FT-Unshades [8]. The runtime for the FT-Unshades test was calculated based on ideal assumptions, using a testbench lasting 200000 clock cycles and injecting bitflips in all FFs, with each injection requiring 5ms.

It is worth noting that this small number of simulation clock cycles cannot cover all possible internal substates of the DUT, therefore resulting in a non exhaustive test. A testbench that covers all internal substates is hard or even impossible to design, and the simulation time would be so high to render the analysis impractical. Compared with the FT-Unshades toolchain, which introduces a consistent speedup with respect to PC based simulators, our approach is several orders of magnitude faster.

VI. CONCLUSIONS & FUTURE WORK

In this work we presented an algorithm for detecting TMR implementation problems in a given netlist before ASIC manufacture. The proposed algorithm does not require a testbench and can perform exhaustive verification of production-ready netlists, like the LEON2-FT processor presented in this work, in reasonable time (less then 1 hour). To the best of the authors’ knowledge, no other approach provides this kind of performance.

Future work includes replacing the actual simulation/injection step with the identification of triplets followed by formal verification of the correct propagation of flip-flop values through the voting logic, and the use of hardware-accelerated fault-injectors.

REFERENCES

<table>
<thead>
<tr>
<th>Testcase</th>
<th># of gates*</th>
<th># of FFs</th>
<th>FT-Unshades*</th>
<th>InFault*</th>
</tr>
</thead>
<tbody>
<tr>
<td>resetgen</td>
<td>648</td>
<td>30</td>
<td>8h</td>
<td><1m</td>
</tr>
<tr>
<td>pci mas</td>
<td>14379</td>
<td>453</td>
<td>5d 3h</td>
<td>2m</td>
</tr>
<tr>
<td>pci tar</td>
<td>13768</td>
<td>546</td>
<td>6d 7h</td>
<td>2m</td>
</tr>
<tr>
<td>dsu</td>
<td>29139</td>
<td>876</td>
<td>10d 3h</td>
<td>15m</td>
</tr>
<tr>
<td>mctrl</td>
<td>35537</td>
<td>1251</td>
<td>14d 11h</td>
<td>15m</td>
</tr>
<tr>
<td>fpu</td>
<td>66967</td>
<td>1437</td>
<td>16d 15h</td>
<td>1b 52m</td>
</tr>
<tr>
<td>amod</td>
<td>87193</td>
<td>3303</td>
<td>38d 5h</td>
<td>59m</td>
</tr>
<tr>
<td>iu</td>
<td>147894</td>
<td>4224</td>
<td>48d 21h</td>
<td>2h 1m</td>
</tr>
<tr>
<td>pci</td>
<td>190987</td>
<td>7974</td>
<td>92d 7h</td>
<td>32m</td>
</tr>
</tbody>
</table>

* Gatecount after mapping library to standard logic cells
b not exhaustive
*exhaustive, full coverage