
IP-SOC 2010

XLUNA: A REAL-TIME, DEPENDABLE KERNEL FOR EMBEDDED
SYSTEMS

Giovanni Beltrame1, Luca Fossati2, Marco Zulianello2, Pedro Braga3, Luis
Henriques3

1École Polytechnique de Montréal, 900 Boulevard Edouard-Montpetit Montreal, Canada
giovanni.beltrame@polymtl.ca

2European Space Agency, Keplerlaan 1 - Noordwijk, The Netherlands
{Luca.Fossati,Marco.Zulianello}@esa.int

3Critical Software, S.A., Parque Industrial de Taveiro, Lote 48, 3045-504 Coimbra, Portugal
{pbraga,lhenriques}@criticalsoftware.com

Abstract:

While the GNU/Linux Operating System is gain-
ing popularity in research and student communities
as well as in the business world, its impact is still
limited for all those application areas requiring hard
real-time capabilities, extreme robustness, and a min-
imal trusted computing base. Usually these systems
employ hardware that does not yet provide a hyper-
visor mode, necessary for proper system virtualiza-
tion. In this paper we present a system, called xLuna,
composed of three parts: RTEMS, a user-mode ver-
sion of Linux and a small software layer exposing
virtual resources for Linux. We show that, without
requiring a processor with paravirtualization support,
xLuna is able to provide real-time capabilities, pre-
dictability and reliability properties while maintain-
ing the versatility, easy of use and large application
base of Linux.

1 Introduction

There is a strong trend from “classical” embedded
systems towards more sophisticated and flexible ar-
chitectures. Considering the tight timing constraints
imposed by today’s market, such complexity can
only be achieved by implementing a consistent part
of the system’s functionalities as software compo-
nents.

As a consequence, such devices have peculiar re-
quirements, quite different from those of classical
embedded architectures: high demand for process-
ing capabilities, and for a standardized and well-
known application programming interface (API).
These requirements are well supported by contem-
porary desktop and server operating systems such as
Linux, and it is not surprising that there is a strong
trend towards their use also in embedded systems.
The disadvantage of these kernels is that they can-
not usually guarantee response times for their tasks.
Unfortunately, there are application areas (such as
robotic devices, healthcare and military computers)
where a hard real-time response is of critical impor-
tance. Hybrid operating systems, with both real-time

and time-sharing components, are starting to appear
on the market as a solution to these problems. They
have many important benefits such as a comfortable,
well-known interface compatible with many existing
applications, and the ability to run real-time as well
as non real-time applications on the same machine,
without impairing the real-time predictability.

Another issue, which limits the use of standard
desktop OSes in embedded systems, is that they
are often employed in life-critical or mission-critical
scenarios. While the reliability of Linux on desk-
tops and servers is generally very high, this typi-
cally applies to systems with widely adopted config-
urations. Massive changes to the system configura-
tion, as it is often necessary for an embedded sys-
tem, inherently reduce stability and require a signifi-
cant maturation process. At the same time, the criti-
cal parts of the system should not be affected by the
other components which are only employed to sup-
port non-critical functions. Hybrid operating systems
with separate addressing spaces address this prob-
lem. The most widely available commercial solution
is represented by real-time hypervisors [2]. However,
these systems require special virtualization instruc-
tions like Intel VTx [7] or special processor modes.
Such characteristics are not always available for the
kind of embedded processors used in critical (i.e.
medical, aerospace) applications.

In this paper we present xLuna, a reliable RTEM-
S/Linux kernel. This work was motivated by the need
for a runtime environment targeting real-time and
non-real-time applications and providing high relia-
bility, real time behavior and the support for a large
application base on hardware not directly support-
ing paravirtualization. Next to these features, stan-
dard programming interfaces (e.g. POSIX), an ex-
tensive set of libraries, and a familiar environment,
requiring a minimal learning curve for either creat-
ing new applications or migrating/integrating exist-
ing components, are needed. xLuna requires only a
dual mode (user/superuser) processor with MMU: by
running the Linux kernel in unprivileged mode, this
solution gathers the benefits of using a well known

IP-SOC 2010 Conference Nov. 30 - Dec. 1, 2010 1

desktop OS while assuring fault isolation and real-
time properties on simple hardware.

Other attempts of combining Linux with a real-
time kernel include MaRTE-OS [6], a real-time ker-
nel for embedded applications providing both C and
Ada interfaces, coupled with Linux in two different
ports. In the first, MaRTE-OS executes as part of the
Linux kernel, while in the second it is executed as
a user process. Our work goes in the opposite direc-
tion in that we integrate Linux inside a RTOS and not
viceversa.

In addition to maintaning real-time properties, as
shown in the following, our system features com-
plete independence and isolation between the Linux
and RTEMS subsystems, something not completely
true for the existing approaches (e.g. [5, 6]). This
has been achieved by executing Linux as an RTEMS
tasks and by implementing tight memory protection
mechanisms.

This paper is organized as follows: the xLuna ker-
nel is described in detail in Section 2 and results
about its performance are contained in Section 3. Fi-
nally, Section 4 concludes the paper and describes
possible future developments.

2 xLuna

The solution introduced by xLuna (shown in Fig-
ure 1) is based on two sub-systems. The first one
provides support for Hard Real-Time (HRT) tasks,
the second one provides a well-known programming
interface with an extensive set of libraries. The ad-
vantage in having two isolated systems consists of
the possibility to have applications with different crit-
icality levels running on the same system. Thus, non-
critical components are quickly developed or simply
ported from a previous implementation, resulting in
a reduction of time-to-market and budget. Further-
more, because the HRT system is protected by the
Memory Management Unit (MMU) from the Non-
Real-Time (NRT) system, a heavy validation and ver-
ification test campaign on non-critical components
could be reduced or even avoided. This separation al-
lows an approach where the Linux sub-system can be
activated and deactivated at any time; moreover, pro-
tection from erroneous behaviour of the Linux ker-
nel is ensured. xLuna is currently built to support the
LEON 2 processor and it uses Snapgear Embedded
Linux [1] as the Linux subsystem.

xLuna, as described in the Section 2.3.1, orga-
nizes and manages the memory for the whole system.
The 4GB space addressable by the LEON proces-
sor is allocated to different devices, including RAM,
PROM, bus I/O, on-chip registers, etc. The available
RAM space is, in turn, divided into two parts, one
for RTEMS kernel and its tasks and the other for the
use by Linux kernel and Linux processes. RTEMS
occupies the first chunk of memory with a fixed con-
figurable size and the rest is allocated to Linux.

The communication and synchronization of HRT
tasks with NRT processes takes place through the
Inter-Systems Communication (ISC) module, as de-
scribed in Section 2.3.4. This module provides

HardwareHardware

HRT
1

HRT
1 HRT

n

HRT
n

...

RTEMS Memory

Manager

Memory

Manager

xLuna core

Linux kernelLinux kernel

...

Linux task
NRT

1

NRT
1 NRT

m

NRT
m

RTEMS subsytem

(privileged mode)

RTEMS subsytem

(privileged mode)

Linux subsystem

(user mode)

Linux subsystem

(user mode)

Legend:

ISC

Manager

ISC

Manager

IRQ

Manager

IRQ

Manager

Device

Drivers

Device

Drivers

Figure 1: Overview of the xLuna architecture: xLuna
and RTEMS are run in the same privileged environ-
ment, while Linux is executed in user-mode as the
RTEMS idle thread

synchronous/asynchronous bi-directional communi-
cation by using message queues. RTEMS tasks inter-
act with it through direct calls to xLuna primitives,
while Linux processes read/write to a character de-
vice.

2.1 Linux Subsystem

The modifications that have been performed to the
Linux kernel source code are reduced to a minimum
to ensure portability among different versions. All
the implemented patches are mainly due to the fact
that, in our system, Linux is not executed on bare
hardware and with supervisor privileges. Instead, it
runs inside a software shell (xLuna) as a user-mode
process. The main challenge of this approach is to
maintain, through the soft-virtualization of the un-
derlying hardware, the low-priority Linux system un-
aware of its execution environment.

In particular, to guarantee the real time properties
of RTEMS and to ensure that failures in the Linux
kernel do not affect the rest of the system, all direct
hardware accesses was replaced with communication
events triggering the hardware management primi-
tives of the xLuna and RTEMS subsystems. This
way, it is only necessary to make sure that xLuna
routines behave as expected in order to guarantee
that all operations on the hardware are properly per-
formed. In addition, memory is not directly managed
by the Linux kernel but, to achieve memory protec-
tion, Linux only accesses the RAM portion which is
owned by Linux itself. This can be achieved using
the mechanisms described in Section 2.3.1.

As previously introduced, communication among
the two worlds takes place using the Inter-Systems
Communication module. To allow Linux processes
to access to the ISC, a new kernel device was cre-
ated: user processes can access the interface exported
by this driver and easily perform inter-systems com-
munication through regular file operations.

At system startup, the Linux subsystem is not
started automatically but it is launched by calling an
xLuna primitive inside RTEMS applications. This
approach was adopted in order activate Linux only
when needed. Furthermore, in case of Linux ker-
nel panic, a previously registered handler can simply

IP-SOC 2010 Conference Nov. 30 - Dec. 1, 2010 2

restart the NRT environment.
Apart from these modifications, all the usual func-

tionality and libraries of Linux remain untouched
and, from the point of view of the normal applica-
tion developer, the modifications are unnoticeable. In
particular the standard glibc library and the POSIX-
Thread interface are available for writing applica-
tions. Additional libraries can also be added, as in
a normal Linux distribution.

2.1.1 Scheduling Policies

Linux tasks are scheduled by the Linux kernel us-
ing its original unmodified scheduler. This because
Linux is executed as an RTEMS idle thread: the
whole kernel and its processes are phisically exe-
cuted on the processor only when no HRT tasks are
running, as shown by Figure 2.

RTEMS

HRT
1

HRT
2

HRT
3

HRT
n

. IDLE

LINUX

NRT
1

NRT
2

NRT
3

Figure 2: Task scheduling in xLuna

2.2 RTEMS Subsystem

RTEMS (Real-Time Executive for Multiprocessor
Systems) [3] is a free open source real-time oper-
ating system designed for real-time embedded ar-
chitectures. RTEMS does not provide any form of
memory management or support for processes; in
POSIX terminology, it implements a single process
in a multithreaded environment. This is reflected in
the fact that RTEMS provides nearly all POSIX ser-
vices other than those which are related to memory
mapping, process forking, or shared memory.

RTEMS was chosen as the basic block on top of
which the whole xLuna infrastructure is built because
it is a reliable operating system with well known ef-
ficiency, quality and standard compliance. Its main-
tainability and robustness as well as its high perfor-
mance, provide the necessary characteristics for the
utilization in critical embedded systems.

In the context of this paper, the development on the
RTEMS side focuses on the implementation of new
modules that support the execution of the underly-
ing low-priority Linux kernel (more details are con-
tained in Section 2.3). To minimize RTEMS version
dependency, the xLuna project avoids modifications
to the RTEMS source code whenever possible. In-
deed, most of the xLuna features are made available
by replacing the interrupt/trap handling routines of
the RTEMS kernel, only when explicitly required by
a user task. The original RTEMS handlers can also
be restored when necessary. This is possible since all

the code in the RTEMS subsystem is running in priv-
ileged mode. This way, the original RTEMS features
are kept intact when Linux is not needed or when
the xLuna kernel is switched to a safe mode, where
no NRT functionality is available. Furthermore, with
the adopted design, the xLuna kernel can support fu-
ture RTEMS releases with minimum effort.

All RTEMS real-time characteristics are still avail-
able, as it kernel was not modified.

2.3 xLuna Subsystem

Figure 3 shows the xLuna subsystem: it is mainly
composed of four submodules, managing the inter-
actions between RTEMS and Linux and between
these sub-systems and the hardware. These are
the Memory Manager, the IRQ Manager, the Inter-
Systems Communication (ISC) Manager and the De-
vice Drivers. These four modules are the heart of
xLuna and they run in privileged mode along with
RTEMS.

xLuna

Privileged Mode

User Mode

NRT 1

IRQ Monitor Task
Event queue

NRT m

Trap handlers
syscall

...

page fault
ISC Virtual

Device Driver
Virtual

Serial Driver...

IRQ handlers
timer

ISC

serial

RTEMS Kernel
HRT 1

HRT
nBoot loader

xLuna API

IRQ handlers

timer
uart

xLuna services
MM

ISC

console

system

Dispatcher

Linux kernel

...

...

Dispatching

disabled

Low prioirty

Figure 3: Internal structure of the xLuna sub-system

2.3.1 Memory management

Modern operating systems use, among other
architecture-specific approaches, the paging mecha-
nism in order to achieve memory sharing and mem-
ory protection. Paging maps virtual memory into
physical memory on a page-by-page basis with dif-
ferent access rights for each page. This mechanism
usually requires support from the underlying hard-
ware, which in the xLuna case, is the Memory Man-
agement Unit (MMU) module. In particular xLuna
implements a technique called Supervised Memory
Management using the MMU. This technique allows
Linux to manage virtual memory, with every MMU
access being monitored by xLuna. This way, mem-
ory protection of RTEMS from Linux is guaranteed
even in the case of corruption of the Linux kernel.
To achieve memory protection, Linux can only ac-
cess memory which is owned by Linux itself and, in
the same way, the RTEMS kernel and its tasks can
only access their own RAM portion. The xLuna ex-
tensions, running in protected mode, have access to
both RTEMS-owned and Linux-owned memory. To
this end, the virtual address space is partitioned into
three sections:

IP-SOC 2010 Conference Nov. 30 - Dec. 1, 2010 3

• An RTEMS window for RTEMS and xLuna ex-
tensions to access all the physical RAM, ROM,
and I/O addresses.

• A Linux kernel window for the Linux-owned
physical RAM and ROM address spaces.

• A Linux process window to be used by Linux
processes.

Different access rights for the different memory re-
gions are used to enforce memory protection. The
RTEMS window is always marked for kernel mode
access, so that neither Linux processes nor the Linux
kernel can have access to it, while the Linux ker-
nel window is marked as invalid when a Linux pro-
cess is running, protecting the Linux kernel from its
own processes. The invalid bit is restored when a
trap/interrupt occurs. This way the Linux kernel,
even though running with user mode privileges, still
has the usual protection from user processes. Note
how the Linux process window is always accessible
from all the sub-systems.

Figure 4 shows the memory map and the owner-
ship of each memory region. The memory region vis-
ible in the RTEMS-owned window contains all of the
memory-mapped physical resources. The RTEMS
kernel and its tasks use this address space to access
the RTEMS-owned RAM portion and all the other
hardware resources, as if they were running in an en-
vironment without MMU (RTEMS is designed for
such an environment). The RTEMS window is also
used by the xLuna extensions to access the Linux-
owned memory portion. The Linux kernel window
is mapped to all the Linux-owned memory address
space but it does not allow access to any other mem-
ory region. This design protects the global address
space from Linux so that this sub-system is unable to
access physical devices directly. The Linux process
window is used by the Linux kernel to allocate vir-
tual address space for its processes, and each of them
sees a different memory window as normal.

0

Linux kernel
window

Linux process window

4G

RTEMS window

0

RAM...ROM

1G 4G

RAM

RTEMS Linux

Physical address space

T T T T TRR L...ROM L P U P L U U

Virtual address space

R

T

L

P

U

RTEMS kernel

RTEMS task

Linux kernel

page table

Linux process

empty space

Figure 4: Detailed mapping from virtual address
space to physical address space

An important factor in the memory management
design is the placement and management of the page
tables, which implements the above address space
division and access rights management. Allowing
Linux to manage all page tables might compromise
system integrity as uncontrolled changes could make

any physical memory space present in the hardware
platform visible. This means that without employ-
ing any privileged CPU instruction, failures in the
Linux kernel can lead to memory corruption in the
RTEMS space. However, it is also not desirable
to port the whole Linux memory management code
into RTEMS, as the page table management logic
in Linux is very complex and it is highly coupled
with other Linux kernel functions like file system
and task scheduling, The approach proposed here is
to let Linux manage page tables, but under the su-
pervision of RTEMS. In this approach, Linux mem-
ory management logic remains unchanged, but the
memory containing page tables is made read-only to
Linux. Low-level page table interfaces, that change
the virtual to physical memory mapping, are re-
implemented to invoke xLuna services that verify the
validity of the modifications before applying them.

2.3.2 Interrupt handling

As previously described, Linux runs as an RTEMS
regular task with low privileges and no direct con-
nection to the underlying hardware. This situation is
contrary to the basis with which that OS is designed
and it introduces some difficulties, mainly catching
hardware interrupts and traps generated by user pro-
cesseses.

The xLuna kernel provides bridging services in or-
der to connect the Linux interrupt handlers with the
physical interrupt/trap sources. Since during inter-
rupt and trap handling the dispatch of Hard Real-
Time Tasks is disabled, the amount of time spent for
this process is kept to a minimum. As a result, only a
minimal amount of work is done inside the interrupt
service routine of xLuna. The actual work is deferred
and carried out later by a low priority task called Dis-
patcher.

More in detail, the main features provided by the
bridging service module are: (a) managing of the
incoming hardware interrupts by intercepting them
and by pipelining them to the corresponding RTEMS
handlers; (b) catching of all traps from the Linux
subsystem and redirecting to the correct handlers;
(c) allowing Linux kernel to virtually disable inter-
rupts during its execution (in this case xLuna will
not deliver the disabled interrupt to the Linux sub-
system); (d) managing time synchronization between
RTEMS and the Linux subsystem; and (e) provid-
ing an RTEMS API enabling the management of the
Linux subsystem from RTEMS tasks.

All illegal traps from the NRT system (Linux ker-
nel and applications) are handled by xLuna kernel so
that HRT system remains protected. Hardware inter-
rupts are first processed by xLuna and all interrupts
for the Linux kernel are queued and passed to it later
on.

2.3.3 Device drivers and I/O

The device drivers module allows Linux to access ad-
ditional hardware that is not managed neither by the
memory manager, nor by the IRQ manager. For now,

IP-SOC 2010 Conference Nov. 30 - Dec. 1, 2010 4

they only provide access to timer, UART, and ether-
net. These devices are shared between RTEMS and
Linux, which go through xLuna in order to access
them.

Hardware devices can also be exclusively assigned
to Linux using one of two mechanisms: (a) direct
access to the device address space in case they are
passive devices and (b) management through xLuna
for active devices. This means that xLuna can control
the access to specific devices, preventing Linux from
seizing resources needed for RT tasks, or preempting
it when RT requests arrive.

2.3.4 Inter-Systems Communication

In xLuna, communication between HRT and NRT
tasks is possible through a message queue, as de-
picted in Figure 5. This message queue is imple-
mented by the Inter-Systems Communication (ISC)
manager through an RTEMS message queue. It pro-
vides synchronous and asynchronous bi-directional
communication. Communication on the RTEMS
side is implemented directly using message queue
primitives. On the Linux side, a kernel device driver
is provided for inter-systems communication, which
uses system calls to access the xLuna kernel services,
that in turn, call the RTEMS message queue manage-
ment routines. No direct access to the queue is al-
lowed from Linux to avoid corruption of the RTEMS
side of the system. Linux user processes can access
the interface exported by the kernel device driver and
perform inter-systems communication through regu-
lar file operations.

xLuna

Privileged Mode

User Mode

NRT2

HRT1

Linux Kernel

IRQ Monitor Task

Event queue

Dispatcher

HRT2
Write(...);

Add IRQ

ISC Manager

Read Resources

LX_TO_RTEMS

N_FULL
1,2,3,...N

Write Resources

RTEMS_TO_LX

N_EMPTY
1,2,3,...N

ISC Virtual Device

Write Resources
N_EMPTY
1,2,3,...N

Read Resources
N_FULL
1,2,3,...N

Syscall(Write());

Linux_ISR ();

Read(...);

Syscall(Read());

Add IRQ

Linux_ISR ();

/dev/isc Write(...);Read(...);
NRT1

Figure 5: Detailed architecture of the Inter-System
Communication mechanism

As Linux is regarded as a task of RTEMS, block-
ing a Linux process waiting for some message from
RTEMS could naively block the whole Linux ker-
nel from rescheduling. This is certainly not a de-
sired behaviour since there might be other Linux pro-
cesses ready to run. In xLuna, system calls from the
Linux subsystem to read/write messages are only is-
sued when resources for these operations are actually
available.

To enforce isolation between sub-systems, a spe-
cific message queue system was developed and im-
plemented on the ISC module. The communication
resources are placed in the RTEMS memory space,
the Linux kernel can only access them indirectly

through system calls, guaranteeing higher reliability
and clear separation among the HRT and NRT sub-
systems.

2.4 Putting It All Together

Deploying such a complex system on the target hard-
ware architecture is not a simple task and it requires
particular steps to be taken, as shown in Figure 6.
The RTEMS and Linux kernel images are created
separately and loaded in different physical memory
areas. Then, the binary image of the final xLuna
system is generated by linking these two kernel im-
ages together with a small bootstrapper. To simplify
the implementation of the memory protection mech-
anisms, RTEMS and Linux run in separate physi-
cal address spaces. Nevertheless this separation is
not mandatory, since such protection, as explained
in Section 2.3.1, could be achieved by only using
MMU. The implication of this strategy is that the
memory areas for Linux and RTEMS have to be de-
fined at compile time, and cannot be subsequently
modified. This limitation is not of great impact on
embedded real-time applications, where resources
are known and distributed in advance, during the de-
sign of the system.

NRT 1

Linux kernel

NRT m

RTEMS Kernel

HRT 1

HRT n

xLuna bootstrapxLuna core

File system image
Linux subsystem

RTEMS subsystem

...

... Final xLuna image

Figure 6: Linking order of the different sub-systems
in order to produce the executable image of the whole
architecture

The bootstrapper is the entry point to the entire
xLuna system. Its purpose is mainly to define the ini-
tial MMU mapping, i.e. the RTEMS window and the
Linux kernel window. After switching on the MMU,
it jumps to the virtual memory space of the RTEMS
entry point and gives control to the RTEMS kernel.
The raw physical addresses are used only at the very
beginning of the booting process, then the virtual ad-
dresses of the RTEMS window are considered.

The bootstrap process depends on how the final
xLuna image is linked together. Figure 6 gives an
idea of the different stages that are used to produce
the final image. During linking, RTEMS is relocated
to the virtual address in the RTEMS window, and
similarly, the Linux subsystem is relocated to the vir-
tual address of the Linux window. After bootstrap-
ping, the two operating systems are able to run a vir-
tually unlimited number of tasks: new RTEMS (RT)
or Linux (NRT) tasks can be created at runtime using
the services provided by the two operating systems
according to constraints and available resources.

IP-SOC 2010 Conference Nov. 30 - Dec. 1, 2010 5

3 Experimental Results

In this Section we show some performance measures
on the xLuna system. In particular we demonstrate
how the real-time responsiveness of RTEMS is not
affected by the Linux subsystem. Since memory is
a precious resource in embedded systems, we also
present the system’s memory requirements. The sys-
tem’s performance was measured using TSIM [4]
configured as a LEON 2 processor running at 50
MHz, 4-way set associative cache with 16 KB per
way, UART, Timer, and an AHB bus connecting all
the components.

Figure 7 shows the interrupt response time of
RTEMS as the number of either Linux or RTEMS
tasks running in the system increases. In our
experiments, Linux executes a benchmark (the
queens problem) and some mathematical tasks,
while RTEMS performs some floating point opera-
tions interleaved with random length wait states. The
measurements were taken with an increasing number
of RTEMS tasks and a constant the number of Linux
tasks and viceversa. Interrupts were generated at ran-
dom instants during simulation. As shown, xLuna

500

600

700

800

900

IR
Q

R
es
p
o
n
se

T
im

e
[c
lo
ck

cy
cl
es
]

0 50 100 150

of Tasks

RTEMS tasks

Linux tasks

Figure 7: Interrupt response latency of the RTEMS
sub-system with respect to the number of tasks in the
system

does not affect the real-time behavior of RTEMS: the
interrupt response time remains constant and inde-
pendent of the number of tasks running on the sys-
tem.

Figure 8 shows the runtime of the queens Linux
benchmark, as measured while varying the number
of both NRT and HRT tasks. As expected, the exe-

0

20

40

60

80

E
x
ec
u
ti
on

T
im

e
[s
]

0 5 10 15 20

of Tasks

RTEMS tasks

Linux tasks

Figure 8: Execution time of the NRT queens bench-
mark with respect to the number of tasks in the sys-
tem

cution time scales linearly with the number of Linux
tasks with the same priority: the more the tasks, the
less the processing power allocated to each of them
(so less cpu-time allocated to the queens bench-
mark). On the other hand, when increasing the num-
ber of RTEMS tasks, the execution time tends to sat-
urate. This is due to the fact that each RTEMS task
was designed, for this particular experiment, in a way
to interleave idle time with its execution (as normal in
a real-time system): and exceeding a certain number
of tasks, the cumulative idle time is sufficient to al-
low termintating the queens benchmark. This proves
that the performance of Linux tasks is not excessively
affected even when running a large number of real-
time tasks.

The minimum space that must be allocated to hold
the bootstrapper, xLuna core, RTEMS kernel and
HRT tasks amounts to 256 KB. For this reason, to
maximize the TLB performance, we used 256KB
pages. Adding any HRT task to the “empty” system
requires at least a new page, i.e. additional 256KB.
Besides the Linux kernel and global data, the Linux
image holds a file-system containing the NRT tasks,
along with any other programs and libraries needed
by the tasks themselves. The plain image without
any NRT task is 1.1 MB , 1 MB being occupied by
the kernel code and 87 KB by global data.

4 Conclusion

In this paper we presented xLuna, a software archi-
tecture featuring a portable user-mode version of the
Linux OS, running on top of the Real-Time Operat-
ing System (RTOS) RTEMS. xLuna can run on sys-
tems without paravirtualization support, providing a
seamless integration between non-real-time and real-
time tasks.

Results show that xLuna does not affect RTEMS
real time behaviour and interrupt response time, and
that Linux tasks are not excessively slowed down
even when running concurrently with a large number
of RT tasks.

Future work include porting xLuna to other archi-
tectures, and the development of the increase of more
flexible and efficient communication among the two
subsystems.

References
[1] SnapGear Embedded Linux Distribution,

http://www.snapgear.org/.
[2] D. Chisnall. The definitive guide to the xen hypervisor. Pren-

tice Hall Press, 2007.
[3] A. Colin and I. Puaut. Worst-case execution time analysis of

the RTEMS real-time operating system. In Real-Time Sys-
tems, 13th Euromicro Conference on, 2001., pages 191–198,
2001.

[4] Gaisler Research. TSIM, http://www.gaisler.com/.
[5] B. Leslie, C. Van Schaik, and G. Heiser. Wombat: A portable

user-mode linux for embedded systems. 2005.
[6] Masmano, Real, Ripoll, and Crespo. Extending the Capabili-

ties of Real-Time Applications by Combining MaRTE-OS and
Linux, pages 144–155. 2004.

[7] R. Uhlig, G. Neiger, D. Rodgers, A.L. Santoni, F.C.M. Mar-
tins, A.V. Anderson, S.M. Bennett, A. Kagi, F.H. Leung, and
L. Smith. Intel virtualization technology. Computer, 38:48–
56, 2005.

IP-SOC 2010 Conference Nov. 30 - Dec. 1, 2010 6

	Introduction
	xLuna
	Linux Subsystem
	Scheduling Policies

	RTEMS Subsystem
	xLuna Subsystem
	Memory management
	Interrupt handling
	Device drivers and I/O
	Inter-Systems Communication

	Putting It All Together

	Experimental Results
	Conclusion

