
A Reliable Fault Classifier for Dependable Systems
on SRAM-based FPGAs

Cristiana Bolchini, Chiara Sandionigi
Politecnico di Milano, Dip. Elettronica e Informazione

Milano - Italy
{bolchini, sandionigi}@elet.polimi.it

Luca Fossati, David Merodio Codinachs
European Space Agency

Noordwijk, The Netherlands
{luca.fossati, david.merodio.codinachs}@esa.int

Abstract—This paper presents an algorithm for the discrimina-
tion of faults in FPGAs based on their recovery possibility; some
faults can be recovered by reconfiguring the faulty part of the
device, others have a destructive effect. After classification has
been carried out, the suitable fault recovery strategy is applied,
with the final aim of enabling the exploitation of FPGAs, in
particular SRAM-based ones, for critical applications, such as
the ones in the space environment. In this scenario, we investigate
the reliable implementation of the fault classification algorithm,
that can be so integrated in an overall reliable system.

I. INTRODUCTION

SRAM-based Field Programmable Gate Arrays (FPGAs)
are an attractive technology for the electronics of critical
applications, thanks to the possibility of exploiting their re-
configuration capability to cope with the occurrence of faults.
In this work, we identify two categories of faults based on
the possibility to recover from them. Recoverable faults can
be mitigated by reconfiguring the system (possibly only the
faulty sub-system portion) with the same configuration used
before fault occurrence, whereas non-recoverable faults, being
characterized by a destructive effect, lead to the necessity
of relocating the functionality to a non-faulty region. The
identification of the type of fault occurred on the device is
thus fundamental to apply the suitable recovery strategy.

This paper presents a module, called Fault Classifier, im-
plementing an improved algorithm for fault classification.
Since the module will be hosted on an FPGA as well, it
is designed to be reliable itself, investigating and comparing
different hardening implementations. In the past, few other
algorithms have been proposed, and with respect to them
the contributions of this work are: i) the formal definition of
the parameters characterizing the algorithm, ii) the evaluation
of the conditions for correct fault classification, and iii) the
investigation of the reliable implementation of the module.

The paper is structured as follows: Sections II and III
provide the background for the comprehension of the al-
gorithm, by describing the related work and by showing
the envisioned scenario, respectively. Section IV presents the
proposed algorithm and Section V discusses its evaluation.
Section VI investigates the implementation of the algorithm.
Finally, Section VII draws some conclusions.

This work is partially supported by ESA/ESTEC Contract
#22079/08/NL/JK and by Italian MIUR-PRIN project #2008K4P7X9.

II. RELATED WORK

Few works in literature deal with the problem of identifying
faults that physically damage the device. The problem has
been investigated in [1], [2], and [3]. The work presented
in [1] proposes only a rough and not evaluated algorithm,
since the focus is on the design of the overall engine managing
fault tolerance. The reliability of the engine is guaranteed by
periodically reading its configuration data, that is an expensive
operation, prone to errors. The same authors later propose a
detailed and refined version of the classification algorithm
in [2]. In both approaches, the classification of the fault
affecting a portion of the FPGA is based on the analysis of
the relative and absolute frequency of the detected faults; if
a portion of the FPGA is affected by a fault more frequently
than the others, then the absolute frequency is analyzed, by
taking into account the whole history of faults. In none of
these two approaches, a formal definition and accurate study
of the parameters characterizing the algorithms is provided.
Another approach dealing with the discrimination of faults in
FPGAs is presented in [3], where the authors propose the use
of a timer; if two errors are revealed at the same position
in a time interval smaller than a pre-defined threshold, it is
assumed that they are related to the presence of a fault that
has physically damaged the device. The main drawback of the
approach is that it is based on the knowledge of the Mean
Time Between Failure (MTBF), that is highly variable, being
dependent on the specific operating conditions.

The work presented in [4] pursues an objective similar to
ours, by proposing a mechanism for the diagnosis of hard
faults in microprocessors. When an error is detected in an
instruction executed by the microprocessor, an error counter
for every Field Deconfigurable Unit (FDU) used by that
instruction is incremented and, when a counter exceeds a
threshold, the related FDU is identified as affected by a hard
fault, and is deconfigured. As long as transient errors do not
lead to the above-threshold error rates, the error counters are
cleared periodically or when a deconfiguration is activated;
moreover, the threshold is chosen not to be too small and
is related to the specific FDU usage. Although the overall
solution is presented, no indication is available on how to
derive the parameters’ value, and no discussion is introduced
on the reliability characteristics of the strategy.



III. ENVISIONED SCENARIO

This section introduces the adopted fault model and the
elements necessary to understand the algorithm design.

A. Adopted fault model

Traditionally, the single fault assumption is adopted in
designing fault mitigation strategies; such assumption implies
that: i) faults occur one at a time, and ii) the time between the
occurrence of two subsequent faults is long enough to allow
detection of the first fault before the second occurs. The fault
only produces an observable effect, an error, if i) the fault
occurs in a used resource and ii) the applied input (sequence)
is such that a difference in the data/behavior is caused with
respect to the fault-free situation and the adopted detection
mechanism identifies such situation (fault-error relation). The
observability of a fault is related to the probability of the fault
to hit a used resource (Pr). In [5], the following formula has
been proposed for computing Pr:

Pr =
dynamic cross section

static cross section
(1)

where the static cross section is the total sensitive
fraction of the device, and dynamic cross section is
the operational fraction. The other element that should be
taken into account is the latency, that is the time, related to
the fault-error relation, occurring between the instant the fault
occurs and the time an error is detected.

B. Envisioned system

The algorithm is devised to operate in a system composed
of two elements, as in [1]: the logic implementing the actual
application, and a module, called Reconfiguration Controller,
implementing the fault classification and the recovery strategy.

We envision the application system to be partitioned into n
Independently Recoverable Areas (IRAs), such that each area
hosts a Self-Checking portion of the system and generates
error signals to allow the detection of faults (as provided by the
methodology proposed in [6]). In order to avoid that an IRA is
much more sensible than the others to faults, we assume that
the overall observability of faults is uniform for all IRAs in the
FPGA. As for the fault-error relation, it is also assumed that it
does not sensibly change throughout the entire system/device.

The Reconfiguration Controller submodule implementing
the algorithm, namely the Fault Classifier, receives the IRAs’
error signals and discriminates between recoverable and non-
recoverable faults. If the fault is considered as recoverable, the
bitstream portion related to the faulty area is reloaded, other-
wise the faulty area is relocated to a spare area. It is evident
that it is necessary to prevent erroneous reconfigurations by
identifying an erroneous behavior of the Reconfiguration Con-
troller as soon as it is observable. When the Reconfiguration
Controller signals the presence of a fault in itself, it is handled
as an IRA and reconfigured by another controller hosted onto
a different FPGA. Hence, fault detection capability is required
for the Reconfiguration Controller, and consequently for the
Fault Classifier.

IV. FAULT CLASSIFICATION ALGORITHM

The fault classification algorithm is executed each time an
error signal from the IRAs shows the presence of a fault. The
proposed classification is based on the analysis of the fault’s
frequency; an IRA is considered affected by a non-recoverable
fault when it has been “recorded” as faulty during the last K
subsequent observations.

The challenge with this approach is selecting K; a too
small K would lead to erroneously consider most faults as
non-recoverable, while a too large K would cause not to
recognize non-recoverable faults as such. In order to properly
assist the designer of the reliable system in dimensioning
K, we introduce the following elements: i) Pmisr−nr

is the
accepted probability of classifying a recoverable fault as non-
recoverable, and ii) Pmisnr−r

is the accepted probability of
classifying a non-recoverable fault as recoverable. The value
of K can be determined by using the above introduced
probabilities of a mistake in the classification as thresholds
in relation to the events that actually cause the algorithm to
fail in classifying the fault. It is worth noting that, if the first
kind of mistake is made, a relocation of the IRA deemed
as faulty is performed, discarding an actually still healthy
portion of the FPGA. In the second scenario, instead, useless
reconfigurations are performed without a real benefit, thus
incurring in a waste of time and effort, and in the accumulation
of multiple faults.

Recoverable faults are mistaken for non-recoverable ones
whenever K subsequent recoverable faults occur all in the
same IRA, and such events occurs with a probability PIRA×K
equal to:

PIRA×K =

(
1

n

)K
(2)

Therefore, to keep the probability of a mistake within the
desired threshold, we obtain:

K ≥ dlog 1
n
Pmisr−nr

e (3)

In the definition of K, also the other kind of classification
mistake must be taken into account. A fault is mistaken as
recoverable if a non-recoverable one is not characterized by
K subsequent detections because a recoverable fault occurs
within the sequence. As a result, as shown in Figure 1, to avoid
this situation, the time necessary to classify a non-recoverable
fault must be shorter than the time elapsing between two
recoverable faults, defined as MTBFrec. The probability of
this event occurring is related to the latency lat, that is the
time for a given non-recoverable fault to produce an error.
Since for the first (K - 1) times the system tries to recover by
reconfiguring the IRA assuming it to be a recoverable error,
(K − 1) · lat indicates the time necessary to recognize a non-
recoverable fault, where lat is associated with that specific
fault. Nevertheless, as stated above, we assume a homoge-
neous implementation of the system onto the device, such
that this parameter can be assumed as unique for all faults,
using an average value. The fault, not yet classified as non-
recoverable, is hereafter called not-recovered. By considering



Rec fault 1

Non-rec
fault A

lat

(K - 1) lat

MTBFrec

Rec error 1
Non-rec
error A

Non-rec
error A

Non-rec
error A

Rec error 2
Rec fault 2

lat

Fault A recognized
as non-recoverable

Figure 1. Non-recoverable fault classification

this scenario, the probability that a recoverable fault occurs
before a previous, non-recoverable one is identified as such,
is the following:

Plat =
(K − 1) · lat
MTBFrec

(4)

Based on this equation, the threshold K must satisfy the
following condition:

K ≤ MTBFrec
lat

Pmisnr−r
+ 1 (5)

By selecting a value of K which satisfies both Equation 3
and Equation 5, we obtain an algorithm that correctly iden-
tifies non-recoverable faults with desired level of accuracy.
In general, though, latency is neglected since the relation
between fault and error is of orders of magnitude smaller
than fault occurrence, hence Equation 5 could be neglected
and no upper bound for K could be identified. However, the
latency is a positive value that actually depends on the specific
implementation, so an upper bound for K must be considered.
We define the optimum value of K as follows:

K = dlog 1
n
Pmisr−nr

e (6)

The choice of considering the errors’ frequency for the
classification is supported by the assumption that, when an
IRA is affected by a non-recoverable fault, errors in that
IRA are signaled with a higher frequency than errors due
to recoverable faults. In fact, when an error is observed, a
reconfiguration is triggered; if the fault is recoverable, no error
is then detected for the subsequent time window corresponding
to the MTBFrec. If the fault is non-recoverable, the reconfig-
uration produces a benefit only until an input causes the fault
to be observed again; an error in the same IRA is detected after
latency lat. More rigorously, the frequency of a recoverable
fault depends on its occurrence and its observability, whereas
a not-recovered fault is already present in the system and its
frequency depends only on the latency related to the fault-
error relation. As stated, this value is of orders of magnitude
smaller than the MTBFrec, even for harsh environments as
the space one. As a consequence, we derive that the MTBFrec
is bigger than the time elapsing between observations of the
same non-recoverable fault, hence we can expect a number of
not-recovered fault observations, here identified as K, before
a recoverable fault occurs.

Table I
PREDICTED λrec AT THE CONSIDERED ENVIRONMENTAL CONDITIONS

Orbit λrecmin λrecmax λrecweek λrecday

[SEU/day] [SEU/day] [SEU/day] [SEU/day]
Multiplier

exp1 LEO 4.5 · 10−2 2.6 · 10−2 2.6 · 10−2 2.6 · 10−2

exp2 Polar 10.4 · 10−2 8.4 · 10−2 171.6 · 10−2 592.8 · 10−2

exp3 MEO 6.5 · 10−2 71.5 · 10−2 577.2 · 10−2 2028.0 · 10−2

Counter
exp4 LEO 1.9 · 10−2 1.1 · 10−2 1.1 · 10−2 1.1 · 10−2

exp5 Polar 4.3 · 10−2 3.5 · 10−2 71.3 · 10−2 246.2 · 10−2

exp6 MEO 2.7 · 10−2 29.7 · 10−2 239.8 · 10−2 842.4 · 10−2

Synthetic
exp7 LEO 1.7 · 10−2 10−2 10−2 10−2

exp8 Polar 4.0 · 10−2 3.2 · 10−2 66.0 · 10−2 228.0 · 10−2

exp9 MEO 2.5 · 10−2 27.5 · 10−2 222.0 · 10−2 780.0 · 10−2

DSP kernel
exp10 LEO 4.8 · 10−2 2.8 · 10−2 2.8 · 10−2 2.8 · 10−2

exp11 Polar 11.0 · 10−2 9.0 · 10−2 182.2 · 10−2 629.3 · 10−2

exp12 MEO 6.9 · 10−2 75.9 · 10−2 612.7 · 10−2 2152.8 · 10−2

V. ALGORITHM EVALUATION

This section provides an evaluation of the algorithm and
compares it with the related work described in Section II.

A. Experimental evaluation

The algorithm has been tested by simulating the behavior of
4 systems in the space environment, where recoverable faults
are caused by radiations without destructive effect (Single
Event Upset, SEU), and non-recoverable faults are caused
by radiations’ accumulation (Total Ionizing Dose, TID) and
device aging (Time Dependent Dielectric Breakdown, TDDB,
and Electromigration, EM) [2]. Ten-year long missions at three
different orbits have been envisioned: Low-Earth Orbit (LEO),
Polar orbit, and Medium Earth Orbit (MEO). We assume
five years of Solar Minimum and five of Solar Maximum
(characterized by recoverable faults rates λrecmin and λrecmax ,
respectively), with two solar flares lasting one week and one
hour (λrecweek

and λrecday
, respectively). The frequency λrec

predicted for each system has been computed as Pr · λSEU ,
where Pr and λSEU , that is the forecast SEU rates, are
computed by using the data provided in [5]. The values are
reported in Table I. Such data is the basis for the execution of
12 experimental conditions: 3 different orbits for each of the 4
considered systems. Also prediction of non-recoverable faults’
rates has been performed to identify a rough timeline for simu-
lating non-recoverable faults. A rough prediction is sufficient
since the algorithm accuracy in identifying non-recoverable
faults does not depend on their time occurrence. The rate
of non-recoverable faults due to TID effect is computed by
considering a predicted dose rate of 86.4 rad/day [7] and, by
taking into account a Xilinx FPGA XCV1000, a TID of 60
krad [8]; we obtain MTBFTID = 694 days. Finally, we have
considered the MTBFs due to device aging computed in [9],
i.e., MTBFTDDB = 410 days and MTBFEM = 1460 days.

The algorithm has been implemented in a software version
for the evaluation. A SystemC module implements the algo-
rithm, activated by signals simulating faults in the system.
Recoverable faults are simulated by generating an error in an
IRA randomly chosen. A non-recoverable fault is simulated by
activating a fault in an IRA and by keeping the signal active



until it is classified as non-recoverable. The experimental
sessions consisted of measuring the algorithm robustness and
evaluating the condition for correct fault classification.

In the first experimental session, we varied K according to
Equation 6. In a first evaluation phase, we analyzed the impact
of the number of IRAs, by using n = {3, 5, 10, 15, 20, 30},
yielding a total of 72 experiments. The accepted probability of
performing an erroneous classification of the recoverable faults
has been set to Pmisr−nr = 0.005. For each experimental
condition and for each value of n, we considered the rate
of recoverable faults mistakenly classified (Rmisr−nr

) as the
fraction between the number of mis-classifications and the
number of injected recoverable faults. Table II presents the
results by reporting the average value of Rmisr−nr between
the 12 conditions. It can be noted that, by decreasing K,
more errors are performed by marking recoverable faults
as non-recoverable. However, Rmisr−nr

' Pmisr−nr
when

the algorithm operates in a safe region, which means for
sufficiently high values of K. In a second evaluation phase, we
have set n to a fixed value (n = 5) and have varied Pmisr−nr .
Table III reports the average value of Rmisr−nr

. Results are
not reported for Pmisr−nr

> 0.1 since we would have K < 1,
completely hindering a proper classification. It can be noted
that, also by varying Pmisr−nr

, Rmisr−nr
' Pmisr−nr

.

Table II
AVERAGE Rmisr−nr BY SETTING Pmisr−nr =0.005

n=3 n=5 n=10 n=15 n=20 n=30
(K=5) (K=4) (K=3) (K=2) (K=2) (K=2)

avg Rmisr−nr 0.005 0.004 0.104 0.065 0.04 0.049

Table III
AVERAGE Rmisr−nr BY SETTING N=5

Pmisr−nr =0.001 Pmisr−nr =0.004 Pmisr−nr =0.01 Pmisr−nr =0.1
(K=5) (K=4) (K=3) (K=2)

avg Rmisr−nr 0 0.003 0.032 0.169

In the second experimental session, we evaluated the condi-
tion for correct fault classification by computing the maximum
latency according to Equation 4, as follows:

lat ≤
Pmisnr−r

·MTBFrec

K − 1
(7)

For the values of K estimated in the previous experimental
session, we computed the latency by setting sufficiently low
values of the misclassification error probability, Pmisnr−r

=
{0.005, 0.01, 0.05, 0.1}, and computing MTBFrec = 1

λrec
,

where λrec is the worst value between the environmental
conditions. Table IV presents the results by reporting the
average value of lat in the 12 conditions. Results show fault
classification succeeds even with lat up to the order of hours
(with a few exceptions in the range of tens of minutes), which
is a very high value considering a typical fault-error relation,
thus confirming the algorithm rationale.

Table IV
AVERAGE LATENCY [HOUR]

K = 2 K = 3 K = 4 K = 5
Pmisnr−r =0.005 1.54 0.77 0.51 0.39
Pmisnr−r =0.01 3.09 1.54 1.03 0.77
Pmisnr−r =0.05 15.45 7.72 5.15 3.86
Pmisnr−r =0.1 30.90 15.45 10.30 7.72

B. Comparison with related work

Our algorithm has been compared with the contributes
proposed in [4], [3], and [2]. No comparison with the work
presented in [1] could be performed since no indication for
setting the parameters of the algorithm was provided.

The algorithm in [4], targeted for microprocessors, is quite
similar to ours. We verified that by setting the period for
clearing the counters as MTBF of recoverable faults and the
threshold as K, the algorithm in [4] has the same classification
performance as ours. However, our approach only requires the
use of one counter of length K, whereas, in [4], it is necessary
to set as many counters as the IRAs, whose number can be very
high; counters can considerably impact the area occupation of
the Fault Classifier both for their number and for the hardening
process. Moreover, the structure of our algorithm enables a
formal and rigorous study of the effect of each parameter.

The approach in [3] can be considered equivalent to ours
when K is set to 2, if we do not fix a MTBF (not so
easily predictable). Such value of K is suitable when the
number of IRAs is high enough (greater than 10, according
to our approach), otherwise it is possible to fall into a mis-
classification of a recoverable fault as non-recoverable.

Finally, we have implemented the algorithm in [2]. We have
considered that a fault occurs relatively more frequently than
the others when only the faulty IRA is registered in a buffer of
length K. Moreover, we have computed the thresholds related
to non-recoverable faults to analyze their absolute frequency.
We have evaluated such algorithm by considering the number
of fault observations required to classify the fault as non-
recoverable, and by comparing it with K, as shown in Figure 2.
Results show that, in the approach proposed in [2], the number
of fault observations to recognize a non-recoverable fault can
be very high, whereas in our approach is fixed.

0

25

50

75

100

N
u
m
b
er

of
ob

se
rv
at
io
n
s

ex
p1

ex
p2

ex
p3

ex
p4

ex
p5

ex
p6

ex
p7

ex
p8

ex
p9

ex
p1
0

ex
p1
1

ex
p1
2

Experiment

Our

[2]

Figure 2. Comparison of the number of fault observations to recognize a
non-recoverable fault in our approach and the one proposed in [2].



VI. FAULT CLASSIFIER’S RELIABLE IMPLEMENTATION

The module implementing the fault classification algorithm
receives in input the error_signals from the IRAs and
an enable signal specifying when the error signals are to
be considered valid (the Fault Classifier is disabled during
the recovery phase). We assume that on the error signals
the IRAs adopt Two-Rail Code (TRC) [10], whereas the
enable signal, generated within the Reconfiguration Controller,
is not encoded since the presence of faults in the overall
controller is revealed by an error signal generated by the
controller itself. The Fault Classifier generates three outputs:
fault_identified to signal whether a fault has been
detected, fault_type to specify whether it is recoverable or
not, and faulty_ira to specify the IRA where the fault has
occurred. The input signals are used, together with the follow-
ing local information, to classify the fault: the IRA identified
as faulty the last time an error has been detected (last_ira),
the number of consecutive errors detected on the IRA specified
in the above mentioned register (error_counter), and the
parameter K, specifying the threshold to classify a fault as
non recoverable. The resulting structure of the nominal Fault
Classifier module is reported in Figure 3; it is possible to
identify the internal signals used to characterize the situation,
error_detected (when an IRA is identified as faulty),
same_ira (whether the IRA identified as faulty is the same
as the last IRA detected as faulty), and max_count (whether
the number of consecutive fault detections in the same IRA
has reached the pre-defined threshold K).

As discussed in Section III, the implementation of an overall
reliable system requires the hardening of the Fault Classifier,
such that it will be possible to detect faults affecting any por-
tion of the controller thus triggering a suitable recovery phase.
We deem sufficient to provide fault detection properties only,
since, when a fault is detected, a reconfiguration (and reset) of
the controller would only cause a minor delay in classifying a
fault as not-recoverable. In fact, in case of recoverable faults,
the most frequent ones, a loss of information has not negative
effects, otherwise an increased number of observations (at

fsm

clock
reset

enable

er
ro
r_
si
gn
al
s[
(n
x2
)-1
:0
]

ira

fa
ul
ty
_i
ra

la
st
_i
ra

er
ro
r_
co
un
te
r

fault_identified
fault_type

K

same_ira

n n

error_detected

max_count

⎡log2K⎤

faulty_ira[n-1:0]

error_detected_module

same_ira_module

error_counter_module

max_count_module

+

M
U
X

1

2

2n

rst

clk

Figure 3. Fault Classifier structure.

most 2K-1 instead of K) is required to obtain the correct
diagnosis; given the actual values used for K, the negative ef-
fect of a longer observation is quite limited, since, as explained
in Section IV, the frequency for observing errors due to the
same non-recoverable fault is high enough. Hence, even the
most critical registers for discriminating between faults, i.e.,
the ones related to the error_counter and the last_ira,
when reset, do not compromise seriously the correctness of
the classification. Nevertheless, for the sake of completeness,
implementations achieving fault tolerance properties have been
investigated. In particular, our analysis took into account the
following hardened solutions: i) an implementation that applies
Duplication With Comparison (DWC) on the module, ii) a
Self-Checking (SC) implementation based on the application
of error detection codes, iii) a Self-Checking implementation
coupled with Triple Modular Redundancy (TMR) applied to
the most critical registers (SC+), and iv) an implementation
where TMR is applied to the entire system with a fine
granularity, by following the approach offered by Xilinx’s
TMRTool (X-TMR) [11].

A. Duplication With Comparison: DWC

In this implementation, two replicas of the Fault Classifier
receive the same inputs and their outputs are compared by
Two-Rail Code Checkers (TRCCs) for mismatch. The design
is straightforward and no specific issues arise in the imple-
mentation of the solution, provided the hierarchy is guaranteed
during the synthesis process. The tree of TRCCs is applied to
the module’s primary outputs, amounting to a total of n + 2
lines, being n the number of IRAs in the monitored FPGA.

B. Self-Checking via Error Detecting Codes: SC

For the self-checking implementation, three classes of ele-
ments that constitute point of failures have been identified:
i) the states of the FSM, ii) the internal variables of the
datapath, and iii) the outputs. The analysis of the number of
states of the control FSM and the values stored in the other
registers allowed us to select the 1-hot code, to protect all the
registers of the module, thus adopting a very well known (and
thus easily implementable) encoding. In particular, since one
of the monitored IRAs may be faulty at most, based on the
adopted working hypotheses, the content of the faulty_ira
and last_ira (from Figure 3) naturally exploits a 1-hot
encoding. A similar analysis holds for register ira, buffering
the input error signals; eventually, it might contain an all 0s
configuration, when no fault is detected on the monitored
IRA. Therefore, by concatenating the complement of the
error_detected signal with ira, an immediate, cost-free
1-hot encoding is obtained. For the other internal variables
(state register and error_counter), since the number of
states is limited, the code is not too expensive (the typical
limitation of this code). The primary outputs are single lines
(fault_identified and fault_type), encoded with a
Two-Rail Code, whereas faulty_ira is the encoded content
of the register.



Table V
AREA OCCUPATION (SLICES AND FFS – IN PARENTHESIS) OF THE FAULT

CLASSIFIER IMPLEMENTATIONS AND RELATED OVERHEAD.

Solution K=2 (n=15) K=3 (n=10) K=4 (n=5) K=5 (n=3)
area over. area over. area over. area over.

Nominal 86 (52) - 60 (36) - 40 (22) - 29 (16) -
DWC 176 (104) 105% 120 (72) 100% 81 (44) 102% 58 (32) 100%
SC 120 (53) 40% 96 (39) 60% 57 (25) 42% 47 (20) 62%
SC+ 133 (53) 55% 107 (39) 78% 67 (25) 67% 58 (20) 100%
X-TMR 406 (201) 372% 283 (138) 372% 186 (81) 365% 141 (57) 386%

C. SC and TMR: SC+

A first fault tolerant implementation has been defined by
protecting the most critical registers with TMR, using a
feedback loop to propagate the correct value to the protected
registers, thus avoiding any glitch in the stored values, espe-
cially usefull for the case of non-recoverable faults.

D. X-TMR

As a final alternative, we applied fault tolerance to the
overall module with a fine granularity. We implemented the
solution achieved by using X-TMR, that applies TMR to
the entire system with a fine granularity. Unlike traditional
TMR, X-TMR triplicates i) all inputs, including clocks and
throughput logic, ii) feedback logic, and iii) all ouputs; it
inserts majority voters on feedback paths, and minority voters
on outputs to detect and disable incorrect output paths. Such
solution is the one usually adopted for reconfigurable FPGAs
in high-radiation environments.

E. Cost Analysis

The proposed implementations are compared in Table V
with respect to their overheads, in terms of area occupation
(number of used slices and flip flops); the selected device is
a Xilinx Virtex-II XC2V1000. Each implementation has been
analyzed by varying K and n as in the previous section, to
derive a trend in the implementation costs. As expected, as
the number of monitored IRAs n increases, the size of the
controller increases, in all nominal and hardened versions. The
most expensive solution is the one obtained by using X-TMR,
entailing overheads around 370%, as expected. For the other
implementations, the incidence of the fault detection/tolerance
added functionality is within the foreseen, typical bounds,
keeping the final hardened implementation within acceptable
costs, that is less than 2% of the entire FPGA resources. In
particular, overheads range from 40% and about 100%, based
on the different solutions, allowing the designer to select the
solutions s/he deems more interesting.

The self-checking implementation allows us to have a
competitive solution, characterized by acceptable costs and
benefits in terms of reliability. It has been compared to
the nominal solution in Table VI, in terms of area occu-
pation of the modules composing the Fault Classifier (see
Figure 3); not all modules entail an increment in cost,
in particular error_detected_module and the registers
faulty_ira and last_ira, that do not require modifica-
tions in the self-checking version. Alternative solutions, with

Table VI
AREA OCCUPATION (SLICES AND FFS – IN PARENTHESIS) OF THE FAULT

CLASSIFIER MODULES FOR THE NOMINAL VERSION AND THE
SELF-CHECKING ONE.

Module K=2 (n=15) K=3 (n=10) K=4 (n=5) K=5 (n=3)
Nom. SC Nom. SC Nom. SC Nom. SC

fsm 9 (4) 14 (6) 9 (4) 14 (6) 9 (4) 14 (6) 9 (4) 14 (6)
error detected module 27 (15) 27 (15) 18 (10) 18 (10) 13 (10) 13 (10) 8 (6) 8 (6)
faulty ira 15 (15) 15 (15) 10 (10) 10 (10) 5 (5) 5 (5) 3 (3) 3 (3)
last ira 15 (15) 15 (15) 10 (10) 10 (10) 5 (5) 5 (5) 3 (3) 3 (3)
same ira module 4 (0) 8 (0) 3 (0) 4 (0) 2 (0) 2 (0) 1 (0) 2 (0)
error counter module 5 (3) 3 (2) 5 (3) 5 (3) 5 (3) 6 (4) 5 (3) 8 (5)
max count module 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 2 (0)

acceptable but higher costs, do not entail significative benefits
in terms of additional reliability.

VII. CONCLUSION

In this paper, an algorithm for the distinction between
recoverable and non-recoverable faults has been designed,
and its integration into an overall reliable system has been
proposed. Experimental results prove the effectiveness of the
algorithm, also with respect to the related work. Moreover,
different reliable implementations of the algorithm have been
analyzed.

Future development includes a fault injection campaign
to experimentally evaluate the achieved reliability, and the
integration of the module in the Reconfiguration Controller,
exploiting the fault classification information to apply the
suitable recovery strategy.

REFERENCES

[1] C. Bolchini, L. Fossati, D. M. Codinachs, A. Miele, and C. Sandionigi,
“A reliable reconfiguration controller for fault-tolerant embedded sys-
tems on multi-FPGA platforms,” in Proc. IEEE Int. Symp. Defect and
Fault Tolerance in VLSI Systems, 2010, pp. 191–199.

[2] C. Bolchini and C. Sandionigi, “Fault classification for SRAM-based
FPGAs in the space environment for fault mitigation,” IEEE Embedded
Systems Letters, vol. 2, no. 4, pp. 107–111, 2010.

[3] S. Pontarelli, M. Ottavi, V. Vankamamidi, G. C. Cardarilli, F. Lombardi,
and A. Salsano, “Analysis and evaluations of reliability of reconfigurable
FPGAs,” J. Electronic Testing, vol. 24, no. 1-3, pp. 105–116, 2008.

[4] F. A. Bower, D. J. Sorin, and S. Ozev, “A mechanism for online diagno-
sis of hard faults in microprocessors,” in Int. Symp. on Microarchitecture,
2005, pp. 197 – 208.

[5] K. S. Morgan, “SEU-induced persistent error propagation in FPGAs,”
Ph.D. dissertation, Brigham Young University, 2006.

[6] C. Bolchini and A. Miele, “Design space exploration for the design
of reliable SRAM-based FPGA systems,” in Proc. IEEE Int. Symp. on
Defect and Fault-Tolerance in VLSI Systems, 2008, pp. 332 – 340.

[7] R. H. Maurer, M. E. Fraeman, M. N. Martin, and D. R. Roth, “Harsh
environments: space radiation environment, effects and mitigation,”
Johns Hopkins APL Technical Digest, vol. 28, no. 1, 2008.

[8] V. Bocci, M. Carletti, G. Chiodi, E. Gennari, E. Petrolo, A. Salamon,
R. Vari, and S. Veneziano, “Radiation test and application of FPGAs
in the ATLAS level 1 trigger,” in Workshop on Electronics for LHC
Experiments, 2001.

[9] S. Srinivasan, R. Krishnan, P. Mangalagiri, Y. Xie, V. Narayanan, M. J.
Irwin, and K. Sarpatwari, “Toward increasing FPGA lifetime,” IEEE
Trans. Dependable and Secure Computing, vol. 5, no. 2, pp. 115 – 127,
2008.

[10] D. Nikolos, “Self-testing embedded two-rail checkers,” J. Electronic
Testing, Theory and Applications, vol. 12, no. 1-2, pp. 69–79, 1998.

[11] Xilinx Inc, Xilinx TMRTool, 2006. [Online]. Available: http://www.
xilinx.com/esp/mil aero/collateral/tmrtool sellsheet wr.pdf


