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1. INTRODUCTION
The continuous increase of transistor density on a single die
is leading towards the production of more and more com-
plex systems on a single chip, with an increasing number
of components. This brought to the introduction of the
System-On-Chip (SoC) architecture, that integrates on a
single medium all the components of a full system. How-
ever, power and heat dissipation, difficulties in increasing
the clock frequency, and the need for technology reuse to re-
duce time-to-market push towards different solutions from
the classic single-core or custom technology. A solution that
is gaining widespread momentum consists in exploiting the
inherent parallelism of applications, by executing them on
multiple off-the-shelf processor cores. Having separate cores
on a single chip reduces hot-spot brought to the definition of
Multi-Processor Systems-on-Chip (MPSoCs). The design of
MPSoCs raises new challenges due to the large design space
and tight design and time-to-market constraints. MPSoCs
are complex devices, and therefore they require some partic-
ular modelling techniques that are able to hide their inher-
ent complexity. Nevertheless, the model has to be accurate
enough to describe the entire system throughout the phases
of its development, and has to provide enough flexibility to
be refined iteratively up to the point where the actual device
can be produced using current process technology. MPSoC
technology is gaining widespread momentum in the commer-
cial world, and it is being considered as a viable alternative
for space applications [12]

These new challenges for system architects, software and
hardware designers, verification specialists and system inte-
grators may best be met by revisions to old tools, by using
methods to deal with MPSoC complexities, by introducing
new tools and methods working at the same abstraction lev-
els and by moving up in abstraction to take advantage of
new design approaches. Moreover, in order to obey to tight
market constraints, the SoC design process must rely on
pre-designed or third party components. Components ob-
tained from different providers, and even those designed by

different teams of the same company, may be heterogeneous
on several aspects: design domains, interfaces, abstraction
levels, granularity, etc. Therefore, component integration is
required at system level.

In this context, when combining independently designed mod-
ules, the enhancement and assessment of reliability becomes
particularly important; for instance specific approaches are
required in order to be able to apply fault detection and fault
tolerance techniques from the initial steps of the design flow
and also to evaluate the effects of faults in a component
while interacting with the other ones composing the MP-
SoC. These reliability issues are becoming more and more
relevant, as the incidence of soft errors grows also at ground
level [6]. Such errors are caused by radiation, and they tem-
porarily affect memory elements so that their content may be
corrupted; this situation, particularly hazardous in safety-
critical systems, it is serious in general, especially when con-
sidering the embedded systems’ pervasiveness in today’s life.

The ones listed so far are not the only problems related to
the design of the most recent embedded systems (the new
MPSoC architectures in particular). Since the lifetime of a
design is becoming shorter than ever before, it is very impor-
tant to reduce development time as much as possible in order
to fit the design in a narrow time-to-market window. On the
other hand, the market is putting extreme demands on sys-
tem architects to deliver high performance, low power solu-
tions. Such conflicting demands of short time-to-market and
high performance can only be met by incorporating reusabil-
ity and hence, flexibility in the overall design. Since software
design is more flexible than hardware design and since its
errors can be corrected more easily even in later develop-
ment stages, an increasing amount of system functionalities
is being implemented in software. In order to be able to
exploit the potential of a Multi-Processor System-on-Chip
(MPSoC) architecture, this software has to be concurrent.

Unfortunately, parallel software developers must contend
with problems not encountered in sequential programming;
namely: non-determinism, communication, synchronization,
data partitioning and distribution, load-balancing, fault tol-
erance, heterogeneity, shared or distributed memory, dead-
locks, and race conditions. These factors increase the diffi-
culty of designing and debugging software applications: pro-
gram sections that are individually correct and error-free
may create unpredictable results when running concurrently.
Moreover, the execution of a program may not be consistent.



Sometimes a program will run to completion, as expected.
In other cases, the same program may unexpectedly crash,
even on inputs that had been previously successfully tested.
This is often referred to as the non-determinacy problem.

Attempting to debug such programs can be frustrating as
the introduction of debugging statements in the code can
change the behaviour of the program enough to prevent the
bugs from appearing. The execution of debugging state-
ments introduced in parallel tasks slows these tasks down,
affecting their execution in different ways. This in turn
makes them interact differently over time. Such a disrup-
tion is sometimes sufficient to prevent a spurious bug from
showing up when the program is being debugged. This is
normally called the “probe effect” [10], i.e. any attempt to
observe the behaviour of a parallel system may change the
behaviour of that system. The use of traditional standard in-
teractive debuggers, such as GDB, is not very helpful either
in order to solve the problems due to code parallelization
as these debuggers are, in fact, built with the purpose of
debugging sequential programs, and a standard debugging
cycle usually consists of repeatedly executing the program
(with the aid of watches, breakpoints, etc.) until the bug is
found. This assumes a deterministic execution, something
not always true for concurrent software.

ReSP (Reflective Simulation Platform) is a hardware simu-
lation platform, based on the SystemC and TLM libraries,
particularly designed to address the aforementioned issues;
ReSP is primarily targeted to the simulation of Multi-Processor
Systems, though it can in general be used for any hard-
ware system. In other words, ReSP provides a modelling
methodology and framework for high-level co-design and co-
simulation of embedded systems, addressing issues related to
debugging and fault analysis.

The paper is organized as follows: Section 2 presents ReSP
architecture and components; Sections 3 and 4 shows how
it can be applied to fault injection and the debugging of the
embedded operating system eCos [5]. Finally in Section 5
we draw some concluding remarks and we introduce possible
future developments.

2. RESP ARCHITECTURE
The main idea behind ReSP is to give the designer an easy
way to specify the architecture of a system, simulate the
given configuration and perform automatic analysis (such
as design space exploration or reliability assessment) on it.
This work is particularly suitable for platform-based design:
the use of a well-defined set of architectural elements and the
design space exploration on the interconnection, number and
parameters of those elements, are keys for the effectiveness
of the design methodology. In the following, the terms plat-
form and framework are used to indicate the overall ReSP
architecture.

ReSP uses a formalism to describe the components and the
interconnections between components of a system, as many
Architecture Description Languages (ADLs) do. Compo-
nents are chosen from a database of SystemC modules. In
the following, we refer to the term component to describe
any top-level SystemC module included into the framework’s
database.

The proposed framework is based on the concept of reflec-
tion [7], that allows ReSP to view and modify every C++
or SystemC element (variable, method, etc.) specified in
any component. In order to enable the framework’s reflec-
tive capabilities, SystemC code is directly parsed and the
interface files (here called wrappers) are automatically gen-
erated. This means that standard SystemC TLM IPs can
be integrated in the system with minimum effort.

Figure 1 shows the overall structure of ReSP; it is clear that
the system is composed of three main parts: Core, IPs and
Tools. The Core is the simulator itself, which both controls
the SystemC kernel and the instantiation and interconnec-
tions among the components; it is partly written in C++
and partly in Python. The IPs are the component models
which are used to compose the architectures we simulate;
they are written in C++ and are based on the SystemC and
TLM libraries. Finally, the Tools help performing analyses
and debugging on the simulated architecture.

2.1 ReSP Core
The core of the ReSP architecture is the OSCI standard
SystemC kernel, as directly released by OSCI [2]. This is an
advantage when compared to other works, as they require
modifications to the SystemC kernel. ReSP provides a wrap-
per for the Python scripting language around the SystemC
kernel. Python inherently supports reflection, and allows
access to SystemC variables and the execution of arbitrary
function calls to SystemC code. The Simulation Controller
is a set of Python classes that translate commands com-
ing from the user into SystemC function calls, controlling
the simulation behaviour. As an example, it is possible to
run, step, pause, or stop the simulation at runtime. Note
that the pause operation is something not present natively
in SystemC; this concept was introduced in [11] and it is
now widely used.

The User Interface (or Human Computer Interface, HCI) is
also written in Python and it represents an interface between
the simulation controller and the user. This architecture al-
lows multiple interfaces (such as command line or graphical
ones) to be built. Currently we have a command line con-
sole and a socket server. The latter is used both for the
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integration of ReSP with external programs and also for the
communication with the Graphical User Interface.

The novelty introduced by ReSP lies in the Python wrap-
per generation for SystemC and TLM components. ReSP
deals with this step automatically, by generating the Python
wrapper right after parsing the component C++ header file.
The generation flow is shown in Figure 2. Each header file
is parsed using GCCXML, a tool that provides an XML
description of the GCC abstract syntax tree. The result-
ing XML description is manipulated to select all the parts
that need to be exported, and then the OpenSource tool
py++ [1] is used to generate Python wrapping code; this
code is based on the Boost.Python library. The advan-
tage of Boost.Python and py++ over alternative tools like
SWIG (used by most other works) is that it guarantees ac-
cess to all C++ declarations, even private or protected ones,
through the generation of appropriate class wrappers. The
Python interpreter can load the extensions generated by the
ReSP flow, and have full access to the C++, and there-
fore SystemC, classes contained in the exported module.
Another feature of the ReSP flow is that IP documenta-
tion is automatically extracted from the SystemC source
code, and inserted in the Python wrapper. Python self-
documentation features are then used to display such docu-
mentation through the User Interface.

2.2 ReSP IPs
One of the peculiarities of ReSP is the capability of inte-
grating any valid SystemC component in an easy way; in
fact, as described in the previous section, it is not neces-
sary to modify components’ descriptions due to the fact that
ReSP automatically generates the Python wrapper. This
favours external IP reusability and the description of new
hardware architectures by composition of already existing
components. Currently, the simulation platform includes
the following component models: processors cores written
using the ArchC [14] Architectural Description Language;
we possess both the functional and cycle accurate versions
of the PowerPC, Leon2 and ARM7 RISC processors inter-
connections in terms of bus and Networks-On-Chip; mem-
ory systems including simple memories and caches; miscella-
neous components, such as UARTs and interrupt controllers.
More components can be easily added by putting their Sys-
temC source code in the ReSP build tree. No additional
interface or glue code needs to be written, as ReSP auto-
matically generates the appropriate component wrappers.

2.3 ReSP Tools
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Figure 2: ReSP wrapper generation flow

The introduction of reflection paves the way for the devel-
opment of a set of tools to perform system-level analysis.
Any operation that requires observability, can be performed
through the Python wrappers. For example, it is possible to
include advanced network traffic analysis (latency, through-
put, etc.) by observing the network traffic, or add power
modelling to the system by extracting switching activities
from the system at runtime. The biggest advantage given
by the use of Python lies in the decoupling among the simu-
lator itself and the SystemC models; the simulator does not
need to have any a-priori knowledge about the components’
structure: there is not need to change the simulator’s code
even if some components are modified.

Two execution modes are available: interactive and auto-
matic. The first one allows step-by-step execution of the
architecture under analysis. The architecture can be built
using the commands exported by the User Interface: com-
ponents are seen as normal Python classes which are instan-
tiated and connected together executing standard Python
commands. Automatic instantiation, by means of an XML
file, is also possible. Interactive execution mode helps the
designer in having a deeper insight on the modelled archi-
tecture; this mode is especially useful during debug activity
which, if the reflective capabilities of the platform are also
used, can be performed in a very efficient way. Automatic
execution mode is used to run in batch mode a sequence of
simulations.

2.4 ReSP Performance
The first experiment (Figure 3 on the left) was set-up to
measure the transactional speed of the system; it consisted
in the connection of basic master and slave components: the
former sends characters to the latter component. On the
right there are the results of the execution of a full architec-
ture; this was created by connecting a functional Leon2 pro-
cessor model (created using the ArchC [14] architectural de-
scription language) and the TLM Programmer’s View (PV)
memory and bus. The number of instructions per second,
obtained both using native execution and execution inside
ReSP, are shown.

From Figure 3 it is clear that the small performance penalty
due to the additional software layer introduced by Python
is negligible, especially if the advantages coming with the
introduction of Python are considered.

All the experiments were hosted on a 2 GHz Intel Core 2
Duo System with 2 GB of RAM running Gentoo Linux.

3. CASE STUDY: FAULT ANALYSIS
The reflective capabilities provided in ReSP can be used also
for other purposes besides architecture composition and its
dynamic management; in particular, we have exploited these
features to implement a fault injection environment. We
have followed the SoftWare-Implemented Hardware Fault
Injection (SWIFI) [3] approach, based on the modification
of the components’ internal state and on the simulation of
the system behavior in presence of hardware failures.

Works proposed in literature pursue fault injection by means
of code instrumentation for accessing the internal state of the
architecture [8]. By exploiting reflection instrumentation is



Table 1: Reliability analysis: experimental results
Error

Application Register Faults No Error HW Detected SW Detected Not detected
Reg. Bank 2000 1787 51 152 10

ELPF PC Reg. 1000 775 12 207 6
Other Regs 600 591 0 9 0
Reg. Bank 2000 1742 85 154 19

FIR PC Reg. 1000 663 93 235 9
Other Regs 600 571 0 27 2
Reg. Bank 2000 1540 185 271 4

Kalman PC Reg. 1000 591 62 346 1
Other Regs 600 593 0 7 0

TOTAL 10800 8853 488 1408 51
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Figure 3: Execution Speed of a both of generic
hardware architecture (on the left) and a proces-
sor/bus/memory architecture (on the right) mea-
sured first using plain SystemC and then using
ReSP.

not necessary and, therefore, it is possible to perform fault
analysis (a) in a transparent way and (b) significantly re-
ducing the set-up time necessary to be able to carry out the
experiments. Only a few works have exploited reflective pro-
gramming [9], devising, however, solutions strictly related to
reliability assessment. In our case, the adoption of SystemC
and TLM allows us to propose a flexible framework which
is quite innovative also w.r.t. fault injection scenarios.

The possibility of modifying the internal state of the com-
ponents allows the adoption of a generic functional fault
model as well as a radiation induced fault model, such as
Single/Multiple Event Upsets. In this work the considered
fault model is the soft error or Single Event Effect that rep-
resents a transient misbehavior mainly caused by radiations;
this behavior affects the devices causing a bit-flip of a value
stored in a memory cell. The classes of faults that can be
simulated strictly depend on the abstraction level adopted
by the component description. At present the components
available in ReSP are described at a functional level, hence,
the injected faults can only be modeled at behavioral level,
rather than structural one; a common approach when con-
sidering the complexity of the described cores. At the same
time, if a structural description of a component were avail-
able, a low abstraction level fault (such as a stuck-at) might
be modeled and dealt with.

Moreover, ReSP provides the possibility to automatically
instantiate the golden model, i. e., a copy of the system

under test used for comparing the faulty system behavior
with a fault-free one.

Our fault injection environment can use both the execution
modes described in Section 2; during the interactive experi-
mental session, simulation is executed step-by-step; the user
can run the simulation and manually suspend it in order to
inject faults in the desired storage location. Then, she/he
can resume the simulation to monitor the internal state of
the architecture under test and to compare it with the golden
model (i.e., a fault-free copy of the system under test) in or-
der to analyze the failure evolution. On the other hand,
automatic execution can be employed to realize automated
fault injection campaigns. The list of faults to be injected
is specified through an XML file: each fault is identified in
terms of the component and the variable to be changed, the
mask to be applied for changing the variable value and the
clock cycle at which injection has to be performed. When
the experimental session is launched, simulations, one for
each element in the list, are performed. The final report,
stored in a file, shows for each simulation if the fault has
been activated and if it has been detected by fault tolerance
features of the circuit under test.

We have used ReSP for reproducing the experimental ses-
sion proposed in [13]. The purpose of that case study is to
evaluate the capabilities of software redundant techniques in
detecting faults affecting microprocessors: the system under
test is a Leon2 processor running three different applications
hardened with software redundant techniques; the initial
fault injection environment [4] consisted of an FPGA board
emulating the instrumented model of the processor. The
same fault injection campaign was repeated by using ReSP:
we specified a simple architecture composed of a Leon2 func-
tional model connected to a memory through a bus and we
ran the same software applications used in the previous ex-
periment. Several processor registers (e.g.: the Program
Counter register, the register bank, the Y register and the
PSR register) were indicated as possible fault locations. Ta-
ble 1 presents the results of our experimental session.

Our approach shows several advantages with respect to the
work described in [13]: the capability of performing fault in-
jection by means of introspection allows to carry out experi-
ments in a faster and transparent way (i.e. no modifications
to the processor code are needed). It is worth noting that
setting up the experimental environment and executing the
whole fault injection campaign took only one hour, while



instrumenting the processor description for the experiment
proposed in [13] took several days. Moreover, our approach
does not require complex devices such as FPGAs. Finally,
we can perform fault injection experiments at several ab-
straction levels simply by changing the abstraction level of
the components plugged into ReSP.

4. CASE STUDY: DEBUGGING ECOS
The Embedded Configurable Operating System (eCos) is a
Real Time Operating System especially designed for high
configurability. eCos also features the possibility of running
on Symmetric Multi-Processor (SMP) architectures. Unfor-
tunately, in order to enable this last features for the ARM
processor, modifications were necessary to the OS source
code.

When we first executed a simple application (linked against
the modified eCos kernel) composed of two threads writing
to serial port, we experimented the fact that only the printf
instructions contained in one thread were executed. We ap-
plied our debugging tools on the programs and we discovered
the bug following these steps:

1. A breakpoint was put in the second thread just before
the printf that was not executed; when the system
stopped we issued a step command and verified that
actually the execution flow entered the printf routine.
When execution ended we examined the call graph and
discovered that after a certain simulation time the De-
ferred Interrupt Service routines (DSR) were not ex-
ecuted any more. Thanks again to the call graph we
determined the last time the DSR were entered.

2. Using the checkpointing feature we moved the simula-
tion time to the interrupt just after the last successful
call to the DSR; by restarting simulation from here
we noticed that execution did not enter in the DSR
because a global mutex was already locked.

3. By performing a query on the trace database we moved
simulation back to the last time the lock operation was
executed on the mutex and by examining the corre-
sponding code we discovered there was an additional,
erroneous call to such lock method.

Using our debugging mechanisms we were able to discover
and correct the errors in a much shorter time than what
it would have been if we had used a traditional debugging
strategy; the main difficulties in debugging such a program
came from the fact that the problem was manifesting itself
during asynchronous events (i.e. the interrupts). The use of
the call graph and of the event database consistently simpli-
fied the debugging process.

5. CONCLUDING REMARKS
In this paper we presented ReSP, a hardware simulation
platform targeted to Multi-Processor Systems-On-Chip; the
platform is based on the integration of Python and SystemC
allowing effortless integration of external IPs and custom
components. Python augments ReSP with reflective capa-
bilities enabling a fine grained control over simulation and

over the internal status of the component modules; this of-
fers advantages, with respect to traditional simulators, in
the tasks of reliability analysis, design space exploration
and debug and test of the hardware/software system under
analysis. Results show that integration among Python and
SystemC does not introduce significant overhead over plain
SystemC and C++ execution. The effectiveness of our ap-
proach was presented through a case study on the software
reliability in presence of hardware failures, and a framework
for debugging of software and of SystemC hardware models
in a virtual platform co-design environment.
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