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Abstract

Reliability issues play a relevant role in the design of embedded systems for critical ap-
plications; this and the always increasing performance requirements lead to the adoption of
new architectural solutions, as shown by the introduction of Multi-Processor Systems-on-
Chip (MPSoC). MPSoCs raise new challenges related to the complexity of the interactions
among several independent cores. This paper presents a framework, based on a simulation
platform, for the design of this kind of embedded systems; the framework supports the use
of reliability techniques in order to address fault detection and tolerance issues. The simu-
lation platform is also adopted for a reliability assessment task, achieved by exploiting fault
injection targeting each component of the system and by monitoring the effects on the entire
architecture.

1 Introduction

The continuous increase of transistor density on a single die is leading towards the pro-
duction of more and more complex systems on a single chip, with an increasing number
of components. This brought to the introduction of the System-On-Chip (SoC) architec-
ture, that integrates on a single medium all the components of a full system. However,
power and heat dissipation, difficulties in increasing the clock frequency, and the need for
technology reuse to reduce time-to-market push towards different solutions from the classic
single-core or custom technology. A solution that is gaining widespread momentum consists
of exploiting the inherent parallelism of applications, by executing them on multiple off-
the-shelf processor cores. Having separate cores on a single chip reduces hot-spots, allows
better usage of the chip surface and provides more possibilities to exploit parallelism. This
brought to the definition of Multi-Processor System-on-Chip (MPSoC). The design of MP-
SoC raises new challenges due to the large design space and tight design and time-to-market
constraints. MPSoC are complex devices, and therefore they require some particular mod-
eling techniques that are able to hide their inherent complexity. Nevertheless, the model
has to be accurate enough to describe the entire system throughout the phases of its de-
velopment, and has to provide enough flexibility to be refined iteratively up to the point
where the actual device can be produced using current process technology.
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In this context, when combining independently designed modules, the enhancement and
assessment of reliability becomes particularly important; for instance specific approaches
are required in order to be able both to apply fault detection and fault tolerance tech-
niques from the initial steps of the design flow and to evaluate the effects of faults in a
component while interacting with the other ones composing the MPSoC. These reliability
issues are becoming more and more relevant, as the incidence of soft errors grows also at
ground level [7]. Such errors are caused by radiation, and they temporarily affect memory
elements so that their content may be corrupted; this situation, particularly hazardous in
safety-critical systems, it is serious in general, especially when considering the embedded
systems’ pervasiveness in today’s life. A few other co-design frameworks taking into ac-
count reliability have been proposed in the past [16, 6, 2, 15], but they are suited for other
architectural solutions. When considering an MPSoC architecture, the effects of a fault in a
module, if not contained, may corrupt also the other components, thus particular attention
has to be devoted to the design of the overall system, as a collection of critical elements.

The main contribution of this paper is the insertion of a Reliability-Aware layer inside
a framework for the design exploration of Multi-Processor Systems-on-Chip, thus adding
this aspect to the figure of merit used during exploration. This layer is able to introduce
fault detection and fault tolerance properties in the system under consideration, by acting
at high abstraction level and by accessing a dedicated library of hardware and software
design techniques for reliability. The second significant aspect of our work consists in the
use of an MPSoC simulation platform to perform reliability level assessment by means of
Software-Implemented Hardware Fault Injection (SWIFI). This platform allows an analysis
of the behavior of the designed system in the presence of failures.

The rest of the paper is organized as follows. The next section briefly discusses related
work. Section 3 describes the proposed design framework, allowing the exploration of
the solution space also from the reliability point of view, in order to identify the most
convenient trade-off between costs and benefits, fulfilling the designer’s requirements and
constraints. Section 4 details the MPSoC simulation platform, supporting the proposed
design framework and allowing the evaluation of the various possible implementations, and
also shows how we exploit such platform for injecting hardware faults in a component model
and for simulating its effects within the complete MPSoC environment. Finally, Section 5
closes the paper drawing some conclusions.

2 Related Work

In the past, only a few works [16, 6, 2, 15] proposed a hardware/software co-design
flow taking into account reliability issues, and considering fault detection and tolerance
properties as relevant metrics in the exploration of the solution space. Some of these
proposals target classes of faults different from the Single Event Effect, which, nowadays,
is considered particularly interesting.

In [6] the authors provide fault detection capabilities by applying duplication and com-
parison through assertions, evaluating the caused area overhead, but using no other figure
of merit. With respect to [2, 15], the proposed platform is characterized by a higher com-
plexity, and the fault injection simulator provides a valuable tool to verify the achieved
reliability level. This is particularly interesting when considering the limited access to the
resources structure and to the architecture of the adopted system. More precisely, the
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approach presented in [2] has been generalized to be suitable for different design flows and
frameworks, in relation with the architectural solution at hand.

The approach proposed in this paper, focusing on the Single Event Effect fault model,
mainly differs from previous work for its application target, Multi-Processor System-on-
Chip, that introduces new challenges. First of all the number of available cores in the final
architecture, as well as their off-the-shelf nature, introduces new degrees of freedom in the
application of reliability techniques, but also new complexity due to the interaction between
IP cores, that can be manipulated and monitored only externally, with little customization
possible.

3 The proposed framework

The aim of the proposed framework is to enable design space exploration for reliable
MPSoCs, and to guide the designer in the evaluation of the possible design implementations
toward an optimal solution. Acceptable solutions are determined on the basis of a set of
possible architectures, constraints and requirements, and by accessing a library of available
hardware and software techniques for the implementation of reliability properties.

The framework offers capabilities for modifying and managing the system specification
to introduce design for reliability requirements; this step can be followed by the explo-
ration of the design space: it is thus possible to identify an architecture that satisfies the
given constraints and that ensures good performance both in terms of speed and power
consumption. Finally, the issue of the experimental evaluation of the obtained solution, in
terms of reliability level and performance, is taken into account by providing a simulation
environment capable of fault injection activities and performance profiling.
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Figure 1. The proposed framework

An existent tool for MPSoC design space exploration, called PandA, has been extended
by introducing a “Reliability-aware layer” similarly to the methodological approach of the
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work proposed in [2] for simpler architectures. Figure 1 shows the modules of the basic
framework and the extended modules (with a shaded background). The basic framework
aims at determining an optimal implementation of the system under analysis given a target
multi-processor architecture. This is obtained by first exploring the solution space and
then by identifying, among the found solutions, the most suitable one with respect to the
requirements and constraints (in terms of area, performance and power).

The design activity takes as input a system specification described with a high level
language (C, C++ or SystemC). The first step, performed by a module called System
Description Analyzer, translates the specification into an internal representation to be easily
managed and modified, a graph of tasks, called task graph, where nodes represent basic tasks
of the system description (i.e. each of them is composed by some of the instructions of the
original specification). The obtained task graph is fed to the next module that explores
the system design space: by taking into account requirements and constraints, this module
tries to find an optimal binding among the nodes of the task graph and the available
architectural resources. Finally, an architecture simulator is provided for an experimental
evaluation of system performance; simulation is also used to tune the parameters of the
system (for example, cache size and memory latency) to reach the desired goal.

Considering the presented framework, reliability issues are taken into consideration by
including an additional layer for the reliability design space exploration and by enhancing
the simulator for supporting fault injection. Figure 1 highlights additional modules with a
gray background area, whereas Figure 2 details the introduced layer.
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Figure 2. The reliability layer

This layer is composed of two main modules, a Requirements Analyzer and a Reliability
Techniques Applier. The former supports the designer in specifying the parts of the entire
systems that are critical, and for which fault detection and/or tolerance properties need
to be provided; the designer can introduce such criticality indications either in the initial
specification (and the tasks associated with reliability requirements will inherit them) or
on the nominal task graph. The module produces a Decorated Task Graph, where each
task is characterized with additional information about the properties that have to be
guaranteed and with the required level of reliability (detection, tolerance, recovery, etc.).
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Requirements and constraints on communication are derived by the module, by analyzing
the requirements expressed on tasks and the direct specification on the nominal task graph.

In the next step, the Reliability Technique Applier analyzes the decorated task graph
and manipulates it by applying available reliability techniques. During this phase, several
metrics can be adopted to estimate system quality and to guide design space exploration;
considering reliability properties assessment, the identified parameters are fault coverage
and detection latency, while costs are evaluated in terms of area and performance overhead.

The second module accesses a repository where various techniques (acting on the hard-
ware as well as on the software) for guaranteeing fault detection/tolerance properties are
stored. These techniques are applied by introducing redundancies in the tasks and/or by
introducing constraints which require the binding of tasks to reliable components by con-
struction, i.e., resources that are intrinsically fault tolerant such as Totally Self-Checking
(TSC) checkers. As an example, when Triple Module Redundancy is applied on a task,
the corresponding node is triplicated and a node representing a voter is included; further-
more constraints are added to guarantee that the three replicas are managed by different
resources and that the voter must be TSC itself. As another example, if fault detection
only is required, task duplication is considered as a viable technique to be applied with
respect to space or time redundancy; software code replication is another available tech-
nique, modifying the task internally. Each one of these solutions is characterized by costs,
performance and depends on the available resources.

The result is a modified, Reliability-aware task graph that contains the original informa-
tion about the system specification together with the information about reliable properties
and the set of binding constraints. These results are the inputs to the MPSoC Space
Exploration module, part of the basic flow, that produces the final system implementation.

In order to verify the correctness of the design and to compare different implementations
with respect to the adopted figures of merit (e.g., area, performance and reliability), a
hardware simulation platform, called ReSP, has been developed. This tool, enhanced and
instrumented, is also used to evaluate the reliability of the final implementation, as detailed
in the following section.

4 ReSP: The MPSoC simulation platform

We analyzed several simulation platforms found in literature, considering the opportunity
to include them in the framework, but no one satisfied completely our necessities. Their
limitations are mainly related to a lack of flexibility, hence reducing the possibility to
introduce features for managing reliability issues and fault injection.

StepNP [11] is a platform featuring instruction-set simulators wrapped in SystemC: even
if it provides introspection mechanisms, StepNP does not use the TLM standard [3] and
it has a limited set of available components. MPARM [1] is another simulation platform
targeted to multi-processor systems; it is provided with a large support and availability
of components but it does not feature a coherent control-and-view model subsystem that
would allow component introspection. Platform Architect [5] is a SystemC-based design
environment provided with a graphical user interface and a standardized component library.
Although it is a powerful design tool for SoCs, Platform Architect lacks the definition of
a parallel programming model, and it does not specify guidelines for the implementation
of complex communication architectures like NoCs, making it not perfectly suitable for
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MPSoCs. Other simulation platforms are not suitable because dedicated to specific issues:
GRAPES [10] is mainly focused on memory architectures and synchronization issues, and
Simics on software developments [9].

Most of these, and other simulation platforms, are based on TLM; this was introduced
in the past years as a modeling style to describe on-chip communication channels at a
higher abstraction level with respect to Register Transfer Level (RTL) and as a solution
to manage the increasing complexity of modeling Multi-Processor Systems-on-Chip. With
TLM, IP modules can be modeled at a functional level and the system bus behavior can
be viewed as an abstract channel independent from the target bus architecture or protocol
implementation.

The limitations of the reviewed platforms led us to the development of a new simulation
platform, called ReSP (Reflective S imulation P latform), used to support, test and evaluate
the proposed methodology in relation to MPSoC reliability properties.

4.1 Reliability analysis via fault injection

ReSP is provided with reflective capabilities that allow us to query and modify the
internal structure of the hardware components at runtime without the need to instrument
the system description used to define the final implementation. This characteristic is ideal
to be exploited for enabling fault injection campaigns first by modifying the components’
internal state and then by simulating the system behavior as in presence of a hardware
failure. In this way it is possible to significantly reduce the time required for setting-up the
experimental environment, and since no extra elements are introduced to inject faults, no
uncontrolled/masking effects are caused.

The simulation platform structure is shown in Figure 3: it is composed of two main
modules, an Architecture Builder for building the required system architecture on the basis
of a set of available components and a Simulator Core & Fault Injector that executes the
simulation and provides features for faults injection.
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Wrapper
Generator

SystemC
Kernel

XML System Description

SystemC
Components

XML
Fault List

Validation
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Performance estimation

Figure 3. The architecture of the ReSP hardware simulation platform

The simulator is built using the Python programming language [12]; being scripted and
interpreted, this language possesses powerful reflective features: introspection inside archi-
tectural components is allowed, i.e., it is possible to read and modify the internal state
of an object at runtime, without instrumenting the code. This feature was exploited to
provide the simulation platform with both debugging and fault injection capabilities. More
precisely, this aspect is used to model the effect of SEU faults in terms of bit-flips, acting
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on the values stored in memory elements. In general, it is possible to model any kind of
functional failure causing an erroneous value at any point during the application execution.

In order to make hardware components, written using SystemC and TLM libraries,
compatible with the simulation core, the facilities provided by the Boost.Python and Py++
to automatically create Python wrappers around the C++ objects have been used.

Thanks to the reflective capabilities of Python, SystemC components can be easily inte-
grated with ReSP without the need of modifications or creation of specific wrappers; this
favors external IP reusability and the description of new hardware architectures by com-
position of already existing components. Currently, the simulation platform includes the
following components:

• processors cores written using the ArchC [14] Architectural Description Language; we
possess both the functional and cycle accurate versions of the PowerPC, Leon2 and
ARM7 RISC processors;

• interconnections in terms of bus and Networks-On-Chip;
• memory hierarchies including simple memories and caches.

In order to implement debugging functionalities, the SystemC kernel was extended by
providing the possibility of pausing the simulation either when specific events are raised
or when a specified amount of time elapsed. After the system halts, introspection can be
used to check the internal state of the components (for example the values of the registers
of a processor), eventually also modifying it; simulation may then be restarted. This same
feature has been exploited to support fault injection and to derive reliability assessments,
as discussed in the next section.

4.2 Reliability Analysis

The fact that it is possible to suspend execution, modify an internal value stored in a
memory element and resume execution, allows to simulate the fault effects, thus being able
to evaluate the behavior of the system in presence of errors and its capability to detect
the fault, and recover from it, or just mask it. The classes of faults that can be simulated
strictly depend on the abstraction level adopted by the component description; when the
available model is functional the injected and simulated faults are considered at behavioral
level, whereas if the component is described at RTL level, the considered fault set is defined
at logical level.

When a fault injection campaign is executed, the simulator builds a golden model (i.e.,
a copy of the architecture) in addition to the architecture under test; the fault becomes
observable when, after fault injection, the output of the golden model differs from the output
of the model where the fault is injected. Then, simulation can be automatically stopped
and it is possible to explore the internal state of the architecture and compare it with the
state of the golden model. In case the fault does not generate an error, simulation will
be stopped when a timeout expires. Another feature of the simulator, useful for reliability
consideration, is step-by-step execution: simulation is manually advanced by only a specified
amount of clock cycles, thus it is possible to see in detail how the fault propagates through
the whole architecture.

It is worth noting that, due to the impossibility to apply all possible input patterns, after
a fault is injected, the simulation is resumed for a chosen and finite time, in which the fault
should manifest itself before being declared as “not-observable”. This solution, adopted by
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all fault injection tools, does not guarantee that the fault is not observable. It is thus very
important to be able to closely inspect the effects of a “not-observable” fault, in order to
have some insights on the real potential of that fault.

The presented mechanisms have been implemented to work in a semiautomatic way;
two features are fundamental in reducing efforts for the simulation setup: a) golden model
creation and b) fault list management. The automatic creation of the golden model allows
the developer to avoid the manual specification of the structure of reference architecture
(which is identical to the one under test) and the comparators among the signals of the two
systems. As the fault list is concerned, it is possible to specify, through an XML file, the
list of faults to be injected (each fault is specified by the variable to be changed, the mask
to be applied for changing the variable value, and the clock cycle at which the injection
has to be performed); the simulations, one for each fault, are, then, sequentially executed.
Results are displayed at the end: for each simulation, the report shows if the fault has been
activated (i.e., a difference was observed among the reference golden model and the one
under test) and if it has been detected (in this case there are the details of the detection
timestamp and the signal with the erroneous value).

We are currently using this approach to validate the results on the fault-error relation and
the associated evaluated fault coverage obtained in the fault injection campaign reported in
[13], according to the fault injection environment defined in [4]. That environment consists
of an FPGA board used to emulate an instrumented model of the Leon2 processor [8], and
of a Personal Computer that hosts the FPGA board and runs the software managing the
fault injection experiments. We have performed a preliminary fault injection campaign on
the same system composed by Leon processor connected to a memory through a bus; the
connection was obtained by means of ReSP. Table 1 presents the results of this experimental
session (the “HW Detected” column reports cases where an interrupt has been asserted
because of an error detection or a timeout expiration).

No Error Error
Application Register Faults HW Detected SW Detected Not detected
ELPF Reg. Bank 2000 1787 51 152 10

Other Regs 1600 1366 12 216 6
Kalman Reg. Bank 2000 1540 185 271 4

PC Reg. 1600 1184 62 353 1
TOTAL 10800 8853 488 1408 51

Table 1. Fault injection: experimental results

5 Conclusions and future work

In this paper we present a framework for exploring the design space of MPSoCs; this
framework supports the introduction of reliability techniques and the analysis, by means
of fault injection, of the achieved reliability level.

The introduction of reliability properties from the early phases of the design flow allows
the exploration of the solution space by considering fault detection and tolerance properties
as metrics, to be added to performance and power consumption ones. The proposed fault
injection platform is characterized by a high level of controllability of all aspects of the
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fault injection process; it also provides a detailed report of fault effects, for a more precise
analysis of the reliability level, and information on the faults that are not covered.
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