IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 4, AUGUST 2007

951

Selective Protection Analysis Using a SEU
Emulator: Testing Protocol and Case Study
Over the Leon2 Processor

M. A. Aguirre, Member, IEEE, J. N. Tombs, Member, IEEE, F. Mufioz, V. Baena, H. Guzman, J. Népoles,
A. Torralba, Senior Member, IEEE, A. Fernindez-Ledn, F. Tortosa-Lépez, and D. Merodio

Abstract—VLSI circuits for space application must be protected
by the insertion of massive redundancy. However, this increases
silicon area and the production costs, therefore designers can often
consider leaving some large, noncritical subcircuits unprotected.
This paper presents how FT-UNSHADES, a nonintrusive tool
for fault injection on emulated hardware, helps designers to
select the proper level of protection in every subcircuit. Using
FT-UNSHADES, a test procedure is proposed that provides:
1) information about the quality of the test vectors, 2) a proper
estimation of the number of injected faults required to get
confidence about the results of a fault injection campaign, and
3) information about the criticality of individual subcircuits by
selective fault injection campaigns. In addition, FT-UNSHADES
allows the insertion of multi-bit flips. This test procedure has been
applied to three different, protected and unprotected, versions
of the well-known Leon2 processor, and the results are discussed
here.

Index Terms—Fault injection, single event upset (SEU), FPGA-
based emulation, FPGA reconfiguration, multi-bit upset, ASIC.

I. INTRODUCTION

SICs FOR SPACE applications are intended to work in

a harsh radiation environment. Specific design techniques
are required to protect their memory elements against soft-errors
by means of error correction structures. The circuits are hard-
ened by applying some kind of redundancy, like Triple Modular
Redundancy (TMR), to their most sensitive subcircuits. If an
error in the functional behavior or in the hardening strategy is
found, a redesign cycle will be required with the consequence
of an increase in the design cost and development time. Fur-
thermore, if due care is not taken, hardware redundancy can
be unintentionally removed during the synthesis optimization,
leaving unprotected zones hidden to the designer (although log
files contain key information about the synthesis process, they
are sometimes difficult to interpret or not correctly revised).

Manuscript received October 6, 2006; revised February 20, 2007. This work
was supported by the European Space Agency under Contract Number 17540
and by the CELPAE (P05-TIC-00250) Project from the regional government of
Andalusia. The European Xilinx SEE consortium provided the XTMR version
of the Leon2 processor.

M. A. Aguirre, J. N. Tombs, F. Mufioz, V. Baena, H. Guzmadn, J. Nédpoles,
and A. Torralba are with the Escuela Superior de Ingenieros, Universidad de
Sevilla, E41092 Sevilla, Spain (e-mail: aguirre @gte.esi.us.es).

A. Fernandez-Ledn, F. Tortosa-Lépez, and D. Merodio are with the Micro-
electronics Section TEC-EDM / ESTEC / European Space Agency, 2200 AG
Noordwijk, The Netherlands.

Digital Object Identifier 10.1109/TNS.2007.895550

In order to check the quality of protection against Single
Event Upsets (SEUs), SEU sensitivity is usually assessed by
means of dynamic fault injection test. During the test faults are
injected into a specific target in the circuit at a given time and
the behavior of the faulty circuit is recorded [1]. In the space
context a fault is meant as a SEU, or bit-flip, which consists
of changing the current state of a flip-flop in a particular clock
cycle.

Circuit simulators have been used for fault injection purposes.
They provide exhaustive information of the circuit behavior, al-
lowing full access to any internal signal at any time. However
circuit simulators are very slow [2], especially for large circuits
with a large number of test vectors. On the other hand, circuit
emulation is considered to be a good candidate to reduce the
time required for a fault injection campaign [3]-[11]. A circuit
emulator uses a programmable hardware platform, usually an
FPGA, to host the circuit under test. After the synthesis process,
the circuit netlist is mapped on the internal resources of the
FPGA. To start circuit emulation, the resulting netlist is down-
loaded into the FPGA where it runs at a high speed. Unfortu-
nately, circuit emulators suffer from limited controllability and
observability. In their simplest implementation, the circuit under
test can be only controlled by means of their primary input sig-
nals and its behavior can be only observed by means of their
primary output signals. This limitation is especially frustrating
in the case of a fault injection campaign, where the same circuit
is emulated thousands of times, with only a bit-flip change in
one of its internal registers in a given clock cycle.

Different solutions have been proposed to increase the
controllability and observability of circuit emulators. Many of
them modify the circuit under test introducing extra hardware
to change the state of the internal registers during the fault
injection campaign (and, optionally, to trace fault propagation)
[6], [7], [10]. These methods are known as instrumentation,
and the extra circuitry introduced to control the fault injection
process is known as the instrument. Instrumentation is a pow-
erful method to increase the controllability, (and, optionally, the
observability), of circuit emulators, and provides a high speed
when compared to circuit simulators. However, instrumentation
is an intrusive technique which modifies the design under test
in its high level description, producing a model for testing that
can, eventually, be different to the original design.

A second approach is to increase controllability and observ-
ability in FPGA-based circuit emulators taking advantage of the
partial or total reconfiguration of the Xilinx FPGAs [8], [9].

0018-9499/$25.00 © 2007 IEEE

952

FT-UNSHADES uses a unique approach, based on dynamic
reconfiguration techniques, that allows the user to maintain the
same Register Transfer Level (RTL) structure in the final ASIC
and in the circuit emulated on the FPGA. Using commercial
tools like Formality,! it is possible to maintain and guarantee
an equivalence between ASIC and FPGA netlists. In FT-UN-
SHADES a fault is modeled as a change of the information
stored in a register at a given clock cycle. To solve the con-
trollability and observability problems, FT-UNSHADES takes
advantage of the configuration mechanism inside every Xilinx
FPGA, called Capture and Readback.? Faults are injected into
the FPGA flip-flops by means of read-modify-write operations
of the FPGA configuration memory. Using partial reconfigu-
ration, every bit of the current state of a circuit can be low
level manipulated in such a way that it is not necessary to make
any changes in the circuit netlist. As a consequence, FT-UN-
SHADES is a nonintrusive approach.

Other authors have proposed similar techniques for the fault
analysis of FPGAs in space applications, focusing on the effects
of damage to the FPGA configuration memory rather than the
flip-flop state of the design [13].

When compared to other existing tools, FT-UNSHADES in-
corporates extra features which provide additional capabilities
for the analysis of the results of a fault injection campaign. They
allow the designer to restrict the fault injection to selective parts
of a hierarchical design, which is of interest to determine the
sensitivity of each different subcircuits, and thus decide their
proper level of protection. FT-UNSHADES also permits the
testing of multi-SEUs. Particle hits or radiation can produce
more than one simultaneous bit-flip in registers, especially if
they are close in the layout or the error is produced by a tran-
sient pulse in a combinational network that feeds multiple regis-
ters (Single Event Transient). Higher clock speeds and smaller
technologies suggest that robustness against multi-SEU injec-
tion will likely be a requirement for space applications in the
near future.

This paper is organized as follows. Section II introduces
the FT-UNSHADES system. Section III describes the fault
injection process in FT-UNSHADES and discusses the pro-
posed testing procedure. Section IV presents a fault injection
campaign of the well-known Leon2 processor using FT-UN-
SHADES with the testing procedure defined in Section III.
Three different protected and unprotected versions of this
processor have been used. The results obtained with the fault
injection campaigns are discussed showing the additional fea-
tures provided by FT-UNSHADES. Finally, some conclusions
are drawn in Section V.

II. FT-UNSHADES

FT-UNSHADES [11] is a platform based on Xilinx Virtex
FPGAs. It is a version of the UNSHADES hardware and soft-
ware co-design and co-debug system, intended for fault injec-
tion test [12].

1Synopsys Verify Tools. http://www.synopsys.com
2Xilinx XTMRtool. http://www.xilinx.com

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 4, AUGUST 2007

FPGA f
MUT
(GOLDEN)
SRAM N| TEST
(TEST P st
VECTOR ’
FILE) MUT
(FAULTY)

Host Computer

Fig. 1. FT-UNSHADES basic scheme.

FT-UNSHADES is based on a dedicated hardware platform
and a specific software tool devoted to the control of the test
injection campaign.

The hardware platform is based on two FPGAs. The first
one, called Control FPGA or CFPGA, provides communication
between the hardware platform and the system host. The second
one, called System FPGA or SFPGA (a Xilinx XC2V8000
device in the current version of FT-UNSHADES), hosts the
system under test. In addition, three 24-MB SRAM memories
are used to store the input test vectors. The exact FPGA and
family is not important. A Virtex II device is used for its large
capacity.

On the software side, a system framework has been devel-
oped using a simple test language which defines the test injec-
tion campaign and helps in the analysis of the results. After a
fault injection campaign, a fault database is produced containing
the necessary information to analyze the fault activity. In addi-
tion, the designer can select a step-by-step execution of the ex-
periments stored in the fault database, making possible to trace
the fault propagation path.

The circuit to be tested is prepared using software routines
integrated into the Xilinx standard design flow. Three actions
are required:

* Input test vectors are obtained from an HDL simulator.

Then they are properly formatted and compressed.

* The circuit to be emulated is synthesized using the Xilinx
Virtex II design flow to obtain the Module Under Test
(MUT) using any available synthesis tool. After synthesis,
formal verification checks are performed in order to guar-
antee RTL matching between Xilinx and ASIC vendor
netlists.

» The MUT is encapsulated to build the so-called Emulation
Block (EB).

The structure of an EB is schematized in Fig. 1: two identical
copies of the MUT (named Golden and Faulty, respectively)
are instantiated as black box components along with a control
unit called the Test Shell. During the fault injection campaign a
comparator will detect discrepancies (if any) between the cor-
responding outputs at the Golden and Faulty instances.

AGUIRRE et al.: SELECTIVE PROTECTION ANALY SIS USING A SEU EMULATOR: TESTING PROTOCOL AND CASE STUDY OVER THE LEON2 PROCESSOR 953

The EB is implemented for the target FPGA and downloaded

into the SFPGA, to start the emulation.

The Test Shell is a simple hardware which performs four

tasks:

1) It allows the loading of the (compressed) input test vector
file to the internal SRAM memories of the FT-UN-
SHADES hardware platform.

2) It decompresses and synchronously presents to the MUTs
the test vectors.

3) Once the emulation process starts, it controls the emulation
clock until the clock cycle for the fault injection is reached.
Then, after the fault is injected it allows cycle-by-cycle
propagation of the fault until a discrepancy is observed be-
tween the corresponding outputs of the Golden and Faulty
instances, or until the test vector set is exhausted.

4) Finally, in every instance, it controls the dialog between the
FT-UNSHADES platform and the host.

III. INJECTION PROCESS

A. Fundamentals of the Approach

FT-UNSHADES injects faults in a very interactive and non
intrusive way; by means of partial reconfiguration techniques,
the selection of the target clock cycle and register can be freely
specified. FT-UNSHADES injects faults by read-modify-write
techniques using the configuration bits of the SFPGA [12].

FT-UNSHADES allows a selective fault injection campaign,
restricting the fault injection to a given subcircuit of a hierar-
chical design. To this end it takes advantage of the back-anno-
tation information generated by the Xilinx design flow. Using
this information the register candidate to be flipped can be iden-
tified by its hierarchical path name within the design structure.
Hence, it is possible to associate the high level description of
the flip-flop to its geographical position in the SFPGA. For ex-
ample, the Xilinx standard design flow generates the logic allo-
cation file which contains information like

Bit 0x005a0400 5358 Block = SLICE_X84Y60 Latch = YQ
Net = SEUMUT/U_ALL/U_RAM /sfr_dph(1).

The above data states a relationship between a reg-
ister location and its net name, indicating that flip-flop
SEUMUT/U_ALL/U_RAM/sfr_dph(1) was mapped to the
internal flip-flop labelled Y, at row 84 and column 60. The
numbers in the line provide the necessary information to access
this particular register content through the configuration circuit
of the SFPGA. Note that the net name is represented by its
post synthesis hierarchical path, given by the chain of instance
labels which identifies the register in the high level description
of the circuit. Classifying the nets by their hierarchical path, it
is possible to selectively attack a subset of flip-flops that belong
to the same subcircuit within the design structure.

B. Proposed Testing Procedure

A testing procedure is now proposed to assess, in a systematic
way, the effectiveness of the inserted protections against SEUs,
and the quality of the test vectors (QTV). The QTV to be defined

below provides information about how the test vectors can prop-
agate the effect of a SEU to the primary outputs.

The proposed testing protocol can be outlined as follows:

1) Define a fault injection campaign over the unprotected ver-
sion of the design under test. Faults are randomly applied
over the complete set of registers. Some faults will propa-
gate to the primary outputs of the design. The percentage of
detected faults (defined here as the QTV) represents the cir-
cuit dynamic sensitivity to SEUs with the current test vec-
tors. The user might change the test vectors with the objec-
tive of increasing this percentage as much as possible. Sys-
tematic fault injection in all registers and cycles is possible,
but circuit size and test duration would normally make this
prohibited. A systematic campaign will last F*C*C clock
cycles, where F is the number of registers, and C is the
number of test vector clock cycles.

2) In the second stage of the testing procedure, internal reg-
isters are clustered into subcircuits. Applying the test vec-
tors obtained in the first stage of the testing procedure, once
again, to the unprotected version of the circuit under test,
the percentage of detected faults per subcircuit is obtained,
which represents the subcircuit sensitivity to SEUs. This
information may be used to decide which subcircuits in the
design should be protected.

3) Inthe third stage, a faultinjection campaign is applied to the
protected version of the circuit to detect errors in the protec-
tion scheme. The results will also reveal possible improper
collapses of redundancies made by the synthesis tools.

4) Finally, the FT-UNSHADES platform allows multi-bit
fault injections, that is, simultaneous bit-flips (modeling
multi-bit upsets or MBUs) at different registers.

In space, radiation or particle hits may produce simultaneous
bit-flips in neighbor registers, which can be modeled as a MBU.
The ability of FT-UNSHADES to keep the hierarchical structure
of a design allows it to identify neighbor registers which may be
excited by a MBU in a fault injection campaign. Not only MBUs
robustness will likely be a requirement for space applications in
the future, the design sensitivity to MBUs also reveals the pres-
ence of internal structures which were not properly protected. For
example, a MBU injection campaign reveals that a pure straight-
forward pipeline protected with TMR is less robust against radia-
tion whenitis only voted atthe end. Thisresultcannotbe extracted
from a conventional SEU injection campaign.

IV. LEON2 CASE STUDY

A. Case Study Definition

FT-UNSHADES has been used in a fault injection campaign
over three versions of the well-known Leon2 processor.3 The
first version is the Leon2 netlist produced by the toolbox
provided by Gaisler Research. The second version is the same
processor of version 1 protected with the XTMRTool . The
third version is the original Leon2-FT licensed by the European
Space Agency, which was protected using several ad hoc
techniques. The Leon2 core has been defined with the same
configuration options for the three versions.

3http://www.gaissler.com

954

(proc0)
5-Stage
Register Integer Unit Reset
File — pre— (iu0) et Ut
(rf) 0 (reset)
I-Cache | D-Cache
(icache) | (dcache)
| | 1
AHB Memory AHB/APB
Controller Controller 1 1 | T Bridge
(ahb0) (mctrl0) Uars (apb)
(Uarto Timers Irq Ctrl 10 Port
Uart1) (Timer0) (Irgetrl0) (loport0)
Program
Memory

Fig. 2. Structure of the Leon2.

TABLE I
RESULTS OF THE SYNTHESIS PROCESS FOR EACH LEON2 VERSION

n FF 4LUT Multipl. clk rate (ns) BRAM
Leon2 5222 15249 2 23.748 32
Leon2Xtmr 13854 49845 6 23.916 84
Leon2-FT 13370 22542 2 23.820 34
Test-Shell 1118 2312 0 118.765 6
TABLE II
DETECTED FAULTS WITH THE UNPROTECTED VERSION OF LEON2
INIECTED | 100 | 500 | 1000 | 5000 | 10000 | 2000000
FAULTS
% OF
DETECTED 24 20 18.7 17.0 17.0 16.9
FAULTS

Fig. 2 shows the hierarchical structure of the Leon2 processor.
It is a 32-bit synthesizable processor core based on the SPARC
V8 architecture. The core is highly configurable, and particu-
larly suitable for system-on-a-chip (SOC) designs. The Leon2
processor was designed under contract from the European Space
Agency and the full source code is available under the GNU
LGPL license. A description of the internal structure of the
Leon2 and its primary inputs and outputs can be found in .

Table I represents the results of the synthesis process of each
Leon2 version, showing how size increases in the protection
process. (In Table I, LUT stands for Look-Up Table and BRAM
for Block RAM.)

The set of test vectors used for the circuit is based on the
ROM content for the production test, which is distributed with
the processor netlist. It guarantees that every sub-block inside
the processor will be activated. The test has 275 000 vectors.

B. Testing Results

Following the proposed testing procedure, in the first step a
fault injection campaign is applied to the unprotected version of
Leon2. Table II shows the percentage of detected faults.

According to Table I, a constant percentage of detected faults
is reached at approximately 5000 injections, showing that the
number of visible faults with the current test vectors is only
17%, out of a theoretical 100%. It is a representative figure for

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 4, AUGUST 2007

the QTV. This index may be used to predict how effective the
radiation test would be with these test vectors. The designer
could decide to improve the QTV, if he considers that this figure
is not good enough. At the same time, this table provides the
approximate number of injection cycles required to reach a good
level of confidence in the results produced by a fault injection
campaign.

In the second step of the testing procedure, different subcir-
cuits are selectively subjected to a fault injection campaign in
order to identify sensitive zones of the design. Table III shows
the results obtained by systematically testing every internal sub-
circuit of the design. Ten thousand faults were injected in every
subcircuit (except for the reset module, where the number of in-
jected faults was reduced to 1000). This table shows the number
of registers of the subcircuit (second row), the number of de-
tected faults (third row), the time spent in the campaign in sec-
onds (fourth row), the mean and max number of clock cycles
elapsed between the fault injection and its detection (fifth and
sixth row, respectively), and the primary output where the fault
was detected (seventh and subsequent rows, one per primary
output. Primary outputs are described in).

Fig. 3 shows a graph derived from Table III. The sensitivity
against SEUs for a given subcircuit is defined as the percentage
of injected faults detected in the fault injection campaign ap-
plied to that subcircuit. In Fig. 3, the sensitivity of every sub-
circuit is shown along with its relative size in terms of number
of registers. According to Fig. 3, the reset subcircuit presents
the highest sensitivity to SEUs. Therefore, for a safe operation
of the circuit, despite its small relative area, the reset subcircuit
should be considered as critical and, therefore, it should be pro-
tected. On the other hand, the subcircuits called ahpb and timers
show the lowest sensitivity to SEUs. With this information de-
signers can decide about their proper level of protection, if any.
The activity of the output signals is also valuable information: if
an output is not affected by the injected faults, its corresponding
driving circuitry could also be left unprotected. This is not the
case with the Leon2 processor, as shown in Table III.

In the third phase of the testing procedure the same fault in-
jection campaign was launched for the Leon2-XTMR and the
Leon2-FT. As expected, these circuits did not show any mal-
functioning at their output signals, showing that both circuits
are properly protected.

In the fourth stage of the testing procedure the fault injec-
tion campaign was repeated in the two protected versions of the
Leon2 processor but, in this case, each injected fault was a si-
multaneous multi-bit flip in randomly selected registers. Both
designs did not show any malfunctioning in their primary out-
puts for a fault injection campaign with three simultaneous bit-
flips. When the campaign was repeated with five simultaneous
bit-flips, some faults propagated to the primary outputs where
they were detected as shown in the graph shown in Fig. 4. After
a detailed analysis of every faulty experiment, all the detected
faults were found to be caused by a simultaneous attack to the
same FF but at different clock domains, which is coherent to a
TMR protection scheme.

From the results of this case study, we conclude that the
XTMR and the FT versions of the Leon2 processor were prop-
erly protected. The case study also showed that the test vectors,

AGUIRRE et al.:

SELECTIVE PROTECTION ANALYSIS USING A SEU EMULATOR: TESTING PROTOCOL AND CASE STUDY OVER THE LEON2 PROCESSOR

TABLE IIT
RESULTS OF THE FAULT INJECTION CAMPAIGN FOR THE ORIGINAL LEON2 PROCESSOR WITHOUT PROTECTIONS.
(THE DESCRIPTION OF THE LEON2 SUBCIRCUITS AND PRIMARY OUTPUTS CAN BE FOUND IN)

Subcircuit top ahpb c0 ic ioport iu mctrl proc reset rf timers uarts
#Registers 2279 84 266 166 90 980 131 1447 8 64 127 217
time (s) 259033 2592.44 4109.76 2634.06 2632.17 2950.76 2569.48 2516.93 25596 3424.66 2638.15 2620.16
Faults Det 1704 102 2780 2038 215 1717 3089 1704 809 0 119 1700
Mean (cyc) 26690.8 8.5 1152.8 62.5 178404 26063.1 93762.5 14594.0 3 0 171082.3 168239.0
Max (cyc) 362337 224519 12545 360357 325256 0 363594 364879
Errorn 11 0 0 0 0 19 0 14 0 0 0 0
Address 566 86 1472 1781 3 762 592 839 419 0 99 2
Datao 797 15 1263 149 1 923 1401 833 28 0 20 864
Dataen 37 0 0 0 0 0 629 0 8 0 0 0
Ramon 252 83 415 371 1 322 678 329 508 0 98 0
Ramoen 240 83 397 371 1 314 478 321 481 0 98 0
Rwen 36 0 0 0 0 0 610 0 2 0 0 0
Romén 15 0 33 24 0 37 5 22 6 0 0 0
Tosn 11 0 0 0 0 0 246 0 0 0 0 0
Oen 202 83 365 327 1 253 273 290 485 0 98 0
Read 9 0 31 1 0 11 71 15 14 0 0 0
Writen 26 0 0 0 0 0 492 2 0 0 0
Pioo 152 1 0 0 211 0 0 0 0 0 834
Pioen 65 0 0 0 0 0 0 9 0 0 0

120
m Sensitivity
80
60 |
ao
20 |
o !

top

ahpb

cO

ic

ioport

iu

mctrl

Fig. 3. Relative area and Sensitivity against SEUs of the subcircuits of the unprotected Leon2 processor.

Fig. 4. Relative area and sensitivity for 5 simultaneous faults with the Leon2-Xtmr(v2) and the Leon2-FT(v3) versions.

70

60

50 -

40

30

20

10 -

ahpb

@ Relative Area v2

m Sensitivity v2

O Realtive Area v3

O Sensitivity v3

cO

ic

ioport

iu

mctrl

proc

proc

reset timers uarts

reset

timers

uart

956

although adequate for production test, would lead to a low per-
centage of detected faults in a radiation test, pointing out that a
more exhaustive test vector database would be required for this
case. Finally, the study also showed that different subcircuits in-
side the Leon2 processor could be designed with different levels
of protection.

V. CONCLUSION

Fault injection is the standard procedure to assess the quality
of the protection of a circuit against single event upsets (SEUs).
For large circuits only emulated fault injection based on an
FPGA provide test results in a reasonable time. This paper
presents FT-UNSHADES, a hardware emulator which uses
partial reconfiguration techniques on a Xilinx FPGA to provide
fast, nonintrusive, fault injection emulation. Using FT-UN-
SHADES, a testing procedure has been proposed to help the
designer: 1) to determine the quality of the test vectors, 2) to
determine an adequate number of injected faults, 3) to assess
the quality of the protection against SEUs, 4) to assess the level
of criticality of different subcircuits and, finally, 5) to asses
the quality of the protection against multi-bit flips. As a result,
FT-UNSHADES helps designers to select which parts of the
design could be left unprotected. FT-UNSHADES has been
applied to three different versions of the Leon2 processor. It
has shown that the reset subcircuit of the Leon2 processor is the
most sensitive part of the design. It has also shown that the test
vectors used for production test are not adequate for radiation
test. Finally, the two protected versions of the Leon2 processor
showed to be properly protected.

REFERENCES

[1] J. A. Clark and K. Pradhan, “Fault injection — a method for validating
computer system dependability,” IEEE Computer, vol. 28, no. 6, pp.
47-56, Jun. 1995.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 4, AUGUST 2007

[2] J. Boué, P. Pétillon, and Y. Crouzet, “MEFISTO-L: A VHDL-based
fault injection tool for the experimental assessment of fault tolerance,”
in Proc. Fault-Tolerant Computing Symp., 1998, pp. 168-173.

[3] L. Antoni, R. Leveugle, and B. Feher, “Using run-time reconfiguration
for fault injection in hardware prototypes,” in Proc. IEEE Int. Symp.
Defect and Fault Tolerance in VLSI Syst., 2000, pp. 405—413.

[4] R.Leveugle, “Fault injection in VHDL descriptions and emulation,” in
Proc. IEEE Int. Symp. Defect and Fault Tolerance in VLSI Syst., 2000,
pp. 414-419.

[5] R. Leveugle, “A low-cost hardware approach to dependability valida-

tion of IPs,” in Proc. IEEE Int. Symp. Defect and Fault Tolerance in

VLSI Syst., 2001, pp. 242-249.

P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, and M.

Violante, “FPGA-based fault Injection techniques for fast evaluation

of fault tolerance in VLSI circuits,” in Proc. 11th Int. Conf. Field Pro-

grammable Logic and Applications, FPL 2001, Belfast, UK., Aug.

2001, pp. 493-502.

[7] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda, and M.
Violante, “Exploiting circuit emulation for fast hardness evaluation,”
IEEE Trans. Nucl. Sci., vol. 48, no. 6, pp. 2210-2216, Dec. 2001.

[8] L. Antoni, R. Leveugle, and B. Fehér, “Using run-time reconfiguration

for fault injection in hardware prototypes,” in Proc. IEEE Int. Symp.

Defect and Fault Tolerance in VLSI Syst., 2002, pp. 245-253.

A. Parreira, J. P. Teixeira, A. Pantelimon, M. B. Santos, and J. T. Sousa,

“Fault simulation using partially reconfigurable hardware,” in Proc.

13th. Int. Conf. Field-Programmable Logic and Applications (FPL),

Sep. 2003, pp. 839-848.

[10] C. Lopez-Ongil, M. Garcia-Valderas, M. Portela-Garcia, and L. En-
trena, “Techniques for fast transient fault grading based on autonomous
emulation,” in Proc. Design and Test in Europe Conf. 2005, Munich,
Germany, Feb. 2005, pp. 308-309.

[11] M. A. Aguirre, J. N. Tombs, V. Baena, F. Mufioz-Chavero, A. Torralba,
A. Ferndndez-Leodn, and F. Tortosa, “FT-UNSHADES: A new system
for SEU injection, analysis and diagnostics over post synthesis netlist,”
in Proc. NASA Military and Aerospace Programmable Logic Devices,
MAPLD, Washington, D.C., Sep. 2005.

[12] M. A. Aguirre, J. N. Tombs, V. Baena, J. L. Mora, J. M. Carrasco,
A. Torralba, and L. G. Franquelo, “Microprocessor and FPGA inter-
faces for in-system co-debugging in field programmable hybrid sys-
tems,” Microprocess. Microsyst., vol. 29, no. 2-3, pp. 75-85, 2005.

[13] E. Johnson, M. Caffrey, P. Graham, N. Rollins, and M. Wirthlin, “Ac-
celerator validation of an FPGA SEU simulator,” IEEE Trans. Nucl.
Sci., vol. 50, no. 6, pp. 2147-2157, Dec. 2003.

[14] M. French, P. Graham, M. Wirthlin, and L. Wang, “Cross functional
design tools for radiation mitigation and power optimization of FPGA
circuits,” presented at the 6th Annu. NASA Earth Sci. Technol. Conf.,
ESTC2006, University of Maryland, College Park, MD, Jun. 27-29,
2006.

[6

—_

[9

[t

