WE LOOK AFTER THE EARTH BEAT

HIVAC - VASP1 ASIC Contract 4200019872 Final presentation Sept 2014

Xavier Lhuillier – TAS Toulouse

03/09/2014

Ref.:0005-0005600133

æ

THALES ALENIA SPACE

Agence spatiale européenne

03/09/2014

Introduction on HIVAC contract ► HIVAC Activity VASP0 ASIC development VASP1 ASIC development >> Specification m Design Manufacturing ➤ Electrical test Radiation test VASP1 datasheet VASP1 application **FM** production Conclusion THALES ALENIA SPACE Ref.:0005-0005600133

Introduction on HIVAC contract

- HIVAC Activity
- VASP0 ASIC development
- VASP1 ASIC development
 - Specification
 - m Design
 - Manufacturing
 - Electrical test
 - Radiation test
- VASP1 datasheet
- VASP1 application
- FM production

Conclusion

03/09/2014

Ref.:0005-0005600133

THALES ALENIA SPACE

European Space Agency Agence spatiale européenne Thale

Project Context

03/09/2014

- Optical satellite instruments, Earth observation and avionics units :⁴
 - use widely Charge Coupled Devices and CMOS Active Pixel Sensors
 - >> Need a specific conditionning of the analog signals from the read-out circuits before processing and storage, including :
 - Amplification and filtering 2
 - Analog to digital conversion
 - Challenging constraints
 - Performance : Noise reduction, sensitivity maximisation, power dissipation
 - Environment : temperature range, radiation, lifetime
 - Increase the integration level

~ESA has initiated the HIVAC activity (07/2006)

- Highly Integrated Video Acquisition Chain
- >> Thales Alenia Space granted as Prime contractor
- Design and validation of a video acquisition IC : VASP = CDS + ADC

03/09/2014

Ref.:0005-0005600133

THALES ALENIA SPACE

European Space Agency Agence spatiale européenne ThalesAlenia

VASP0 development

In the frame of HIVAC contract, VASP0 ASIC has been developed

VASP0 Activities :

- Detailed design Layout and simulations
- Foundry / prototypes manufacturing
- Test bench design and manufacturing for functional tests
- VASP functional tests on all prototypes
- Performance characterization
- Radiation tests (TID)

Sub-contractor withdrawn after ADC block design TAS-F finalized the VASP0 design up to top level

THALES ALENIA SPACE

European Space Agency Agence spatiale européenne

Technology	0.35µm
Power Supply	3.3V
Power dissipation	350 mW
Analog functions	CDS or single sampling PGA 1 to 8 by step of 1 ADC
Pixel frequency	From 100 khz to 3 Mhz
Input signal type	CCD and CMOS compatibility
ADC resolution	16 bits
Noise	< 2 Lsb
ENOB	> 14 bits
DNL	< 1 Lsb
INL	< 3.5 Lsb
TID	50 krad
Latchup immunity	> 70 MeV.cm²/mg
Operational temperature range	-55℃ to 125℃
Full performance temperature range	0°C to 30°C

03/09/2014

THALES ALENIA SPACE

Ref.:0005-0005600133

7

European Space Agency Agence spatiale européenne

esa

ThalesAlenia

A Trades / Formeccanica Contoeny Space

>> 100% functions validated from -30℃ to +80℃

Very good electrical performances

- Excellent noise
 - Observed degradation in some modes (reference stability issue)
- Excellent linearity on the 16-bit ADC
 - Observed calibration overflow
 - Observed test bench limitations for accurate measurements
- >> PGA not necessary: all the video chain is integrated

THALES ALENIA SPACE

Radiation test

03/09/2014

Ref.:0005-0005600133

- Analog hardening working well
- Digital not yet hardened

European Space Agency Agence spatiale européenne ThalesAlenia Space

■ CHIPIDEA : Jorge GUILHERME (ADC designer)

- TAS-France : Didier CHEFDEVILLE (project leader) Claude NEVEU (video chain expert) Philippe Ayzac (VASP0 responsible) Fabien TAUZIAC (VASP0 testing)
- **TAS-Italy : Edoardo TADDEI (VASP0 testing)**
- **ESA:** Wahida GASTI (VASP0 technical officer in ESA)

And the many other people !

03/09/2014

THALES ALENIA SPACE

European Space Agency Agence spatiale européenne

9

Ref.:0005-0005600133

🛰 Digital library hardening

- Creation of ~50 hardened cells (schematic, layout)
- Verification of the design
- Characterization of timings and library generation

malog design upgrade

- Voltage reference improvement
- Completion of hardening (< 10% of analog part)</p>

🛰 Foundry, packaging, tests

Qualification in full compliance to ECSS-Q-ST-60

Ref.:0005-0005600133

THALES ALENIA SPACE

Initiated by TAS during VASP upgrade design with ESA approval

- Remove the PGA
- Review the calibration algorithm to remove the overflow
- Increase of the ADC working frequency from 3 to 4 MHz
- Integrate the low noise, high speed reference buffers
- Integrate a clamp function
- Integrate a pixel bus tri-state interface

esa Thales

Ref.:0005-0005600133

03/09/2014

VASP1 specification / architecture

- High performances CDS and 16-bit ADC, both running up to 4 MHz
- Multi-sampling per pixel capability
- Clamping circuit to manage detector DC voltage.
- Bandgap and VCM voltages generation. External references can also be used.
- Serial interface for configuration
- Internal reference buffering

13

03/09/2014

03/09/2014

eesa

European Space Agency Agence spatiale européenne

Thale

- ~ Radiation hardening of digital library
- >>> Voltage reference review
- Analog hardening completion
- 🛰 PGA removal
- ~ Calibration algorithm review
- Increase of the ADC working frequency from 3 to 4 MHz
- >>> Integrate the low noise, high speed reference buffers
- Integrate a clamp function
- >>> Integrate a pixel bus tri-state interface

Ref.:0005-0005600133

European Space Agency Agence spatiale européenne ThalesAlenia Space

➣ 56 logic cells, 14 layout cells, 5 digital I/Os

Radiation Hardening By Design

- TAS internal rules for schematic and layout
- DICE register creation
- Cell improvements to maintain the timing performances

THALES ALENIA SPACE

>> Drive CAD company for complete characterization

- Functionality check
- Arc timing extraction
- Generation of digital tool format

16

Ref.:0005-0005600133

Review stability of the core circuit (banggap)

Allow the use of external references

Separate generator output pins from buffer input pins

Review the trim capability

- Band-gap temperature slope
- Common mode absolute value
- VREF absolute value

03/09/2014

Ref.:0005-0005600133

THALES ALENIA SPACE

Find an improvement in the algorithm

Need to take into account ADC amplifier offset
Improved algorithm, derived from the existing one
Improved algorithm simulated in mixed-mode simulation

+:top_cal:xvasp:xdig:yi35:I0DIGCTRL:pipeliner :top_cal:xvasp:xdig:yi35:I0CALIBCTRL:cpipeliner :top_cal:xvasp:xdig:yi35:I0CALIBCTRL:averageerror +:top_cal:xvasp:xdig:yi35:IOCALIBCTRL:acc_error :top_cal:xvasp:xdig:yi35:I0CALREGBANK:stg1cal_14_coef :top_cal:xvasp:xdig:yi35:I0CALREGBANK:stg1cal_13_coef :top_cal:xvasp:xdig:yl35:I0CALREGBANK:stg1cal_12_coef +:top_cal:xvasp:xdig:yi35:I0CALREGBANK:stg1cal_11_coef :top_cal:xvasp:xdig:y35:I0CALREGBANK:stg1cal_10_coef +:top_cal:xvasp:xdig:yi35:I0CALREGBANK:stg1cal_9_coef +:top_cal:xvasp:xdig:yi35:I0CALREGBANK:stg1cal_8_coef +:top_cal:xvasp:xdig:vi35:IOCALREGBANK:stg1cal_7_coef +:top_cal:xvasp:xdig:vi35:IOCALREGBANK:stg1cal_6_coef +:top_cal:xvasp:xdig:yi35:I0CALREGBANK:stg1cal_5_coef +:top_cal:xvasp:xdig:yi35:I0CALREGBANK:stg1cal_4_coef :top_cal:xvasp:xdig:vi35:I0CALREGBANK:stg1cal_3_coef +:top_cal:xvasp:xdig:yi35:I0CALREGBANK:stg1cal_2_coef +:top_cal:xvasp:xdig:y35:I0CALREGBANK:stg1cal_1_coet top_cal:xvasp:xdig:yi35:I0CALREGBANK:stg1cal_0_coef top_cal:xvasp:xdig:yi35:I0CALREGBANK:stg2cal_14_coef :top_cal:xvasp:xdig:yi35:IOCALREGBANK:stg2cal_13_coef +:top_cal:xvasp:xdig:vi35:IOCALREGBANK:stg2cal_12_coef +:top_cal:xvasp:xdig:y35:IOCALREGBANK:stg2cal_11_coef +:top_cal:xvasp:xdig:yi35:I0CALREGBANK:stg2cal_10_coef +:top_cal:xvasp:xdig:yi35:I0CALREGBANK:stg2cal_9_coef :top_cal:xvasp:xdig:yi35:I0CALREGBANK:stg2cal_8_coef top_cal:xvasp:xdig:yi35:I0CALREGBANK:stg2cal_7_coef +:top_cal:xvasp:xdig:yi35:I0CALREGBANK:stg2cal_6_coef :top_cal:xvasp:xdig:yi35:I0CALREGBANK:stg2cal_5_coef :top_cal:xvasp:xdig:yi35:IOCALREGBANK:stg2cal_4_coef :top_cal:xvasp:xdig:yi35:I0CALREGBANK:stg2cal_3_coef top_cal:xvasp:xdig:yi35:I0CALREGBANK:stg2cal_2_coef +:top_cal:xvasp:xdig:yi35:I0CALREGBANK:stg2cal_1_coef :top_cal:xvasp:xdig:yi35:IOCALREGBANK:stg2cal_0_coef

0.0M 0.1M 0.2M 0.3M 0.4M 0.5M 0.6M 0.7M 0.8M 0.9M 1.0M 1.1M 1.2M 1.3M Time (\$)

03/09/2014

THALES ALENIA SPACE

Agence spatiale européenne

Ref.:0005-0005600133

Reference need to be buffered for CDS, ADC use

Specifications

- >> Low consumption
- 🛰 Low noise
- >> High gain and bandwidth
- Large input and output dynamic range

>> Those differential buffers have been integrated

Offset correction inputs (COC and FOC) have also been buffered

03/09/2014

Ref.:0005-0005600133

THALES ALENIA SPACE

European Space Agency Agence spatiale européenne ThalesAlenia Space

03/09/2014

The clamp is used with CDD detector to bias the decoupling capacitor that is needed to go from detector high voltage to VASP low voltage.

VASP0 - 39mm² - 132 IOs Hardening : Analog 90% - Digital 0% ADC only consumption : 35 mA typ

VASP1 - 81mm² - 108 IOs Hardening : Analog 100% - digital 100% ADC only consumption : 55 mA typ

THALES ALENIA SPACE

European Space Agency Agence spatiale européenne

21

03/09/2014

Ref.:0005-0005600133

03/09/2014

Ref.:0005-0005600133

22

Space

eesa

European Space Agency Agence spatiale européenne

23

Ref.:0005-0005600133

03/09/2014

Wafer and Die

🛰 XFAB 0.35 µm CMOS

- 🛰 8" wafers
- 🛰 250 VASP1 / wafer
- >> 3 months manufacturing
- ➣ Delivery on time
- PCM available

24

THALES ALENIA SPACE

Ref.:0005-0005600133

European Space Agency Agence spatiale européenne

eesa

ThalesAlenia

A Theirs / Firmeconice Corr

pace

~ HCM assembly

🛰 CQFP84

million SERMA technology

- ~ Wafer sort
- Packaged electrical test

UASP 1

1305-19

- ESCC 9000 test

The test plan consists in :

- The full characterisation of one sample
- Statistical tests on ~25 samples
- Radiation tests (TID and SEE).

Agence spatiale européenne

26

03/09/2014

Ref.:0005-0005600133

03/09/2014

Ref.:0005-0005600133

THALES ALENIA SPACE

European Space Agency Agence spatiale européenne

Thale

03/09/2014

VASP1 Characterization Test Board

VASP1 Statistical Test Board

Ref.:0005-0005600133

THALES ALENIA SPACE

European Space Agency

Agence spatiale européenne

ThalesAlenia Space

Power consumption

Power consumption (3,3V / at 4 MHz)

Idd VASP1	Measure (mA)	
CDS+ADC Mode Voltage references activated	103	
CDS+ADC Mode Voltage references deactivated	94	
ADC Only Mode Voltage references activated	55	
ADC Only Mode Voltage references deactivated	48	

03/09/2014

European Space Agency

Agence spatiale européenne

ThalesAlenia

VASP1 characterisation results (1/5)

🛰 Digital

>> All functionalities have been checked and are as expected

THALES ALENIA SPACE

- ➣ I/O parameters
 - Characteristics are as expected
- I²C link has been validated up to 1 MHz
- 🛰 Digital scan ok

🛰 Clamp

- ➣ Functionality proven
- Typ. ON resistance 70 Ohms

03/09/2014

31

VASP1 characterisation results (2/5)

Reference voltages

 Temperature stability of VBG (bandgap) is programmable with a 7 bit word through I²C.

VASP1 characterisation results (2/5)

Reference voltages

 Reference voltages values (Vcm and Vref) are programmable with 7 bit words through I²C.

>> External reference

Functionality proven

🛰 Internal buffers

- >> ADC and CDS reference voltage buffers validated
- >> FOC and COC voltage buffers validated

Ref.:0005-0005600133

THALES ALENIA SPACE

>> Digital conversion transfer function

VASP Transfer Function / CMOS diff. signal / ADC_only Mode

VASP1 characterisation results (3/5)

Measured Input Referred Noise (LSB rms), at 4MHz

Temp	-30°C	25°C	308
CCD mode	2.3	1.9	1.9
CMOS mode	1.6	1.9	1.4
ADC only mode	0.7	0.8	0.85

03/09/2014

Ref.:0005-0005600133

THALES ALENIA SPACE

European Space Agency Agence spatiale européenne

Linearity calibration, at 4MHz

INL before calib (17.6 LSBpp)

INL after calib (9 LSBpp)

Ref.:0005-0005600133

03/09/2014

- ADC linearity has been measured on MTG bench with very good compensation of bench defaults.
- Performance is measured after internal calibration
 - Peak DNL is +0.26 Lsb and -0.26 Lsb (< 0,5 Lsb expected)
 - Peak to peak INL is 2.7 Lsb (4 Lsb expected performance).

🛰 ADC Gain

- By principle, gain is exactly 2 x (Vrefp-Vrefn).
- ✓ Gain stability is < 10 ppm/℃ after tuning (over 30 ℃ range)</p>

Offset (ADC only mode)

- Offset < 50 Lsb</p>
- ✓ Offset stability : < 5 Lsb from -30°C to +80°C (ADC only mode)</p>

03/09/2014

THALES ALENIA SPACE

39

🛰 Multi-sampling

- >> Allow noise reduction on low frequency pixel
- Functionality proven

40

11/1/1

Ref.:0005-0005600133

03/09/2014

••• Offset correction inputs:

- Coarse offset correction (when CDS is used)
 - COCP-COCN injects a regular offset around 2V
 - The offset correction gain is one => ~ 16 LSB/mV
 - Functionality proven
- Fine offset correction
 - FOCP-FOCN injects a regular offset around 0V (FOCP = FOCN = 1.65V)
 - The offset correction gain is one quarter => ~ 4 LSB/mV
 - Functionality proven
- > VASP1 intrinsic offset
 - ∽ < 50 LSB
 - < 5 LSB variation over temperature range</p>

ees

Ref.:0005-0005600133

03/09/2014

THALES ALENIA SPACE

VASP1 ASIC statistical tests are successful

- > 23 of the 24 samples tested give OK result. (yield > 95 %)
 - The only sample NOK has manufacturing default. It is rejected only at this step because it was not tested by ASIC foundry.
- Test results are very homogenous on all the samples tested are OK.

- The VASP1 validation tests confirmed
 - functions and performances are compliant to the ones described by its preliminary datasheet in the full frequency range and in the nominal temperature range.
 - ➤ Large margins are demonstrated by additional testing @ -30℃ and up to 5 MHz.
- Every good sample behaves the same way

VASP1 electrical validation is successful

VASP1 ASIC development

- >> Specification
- m Design
- Manufacturing
- ➤ Electrical test
- ~ Radiation test
- VASP1 datasheet
- VASP1 application
- **FM** production

Conclusion

03/09/2014

THALES ALENIA SPACE

>> Board, program and measurement made by TRAD – Toulouse

m Dose

- ∽ ⁶⁰Co source
- Steps: 0, 9, 23, 33, 43, 57, 72, 101 krad(Si)
- ► ESCC 22900 Low dose rate : 210 rad(Si)/hour .

🛰 3 biasings

- ON with clock (4 parts)
- >> ON without clock (3 parts)
- ➣ OFF (3 parts)

Annealing

- ∽ 25℃ for 24h
- ∽ 100℃ for 168h

03/09/2014

TID results

>> Very few parameters drifted, within specifications

- Leakage current in the input digital IOs
- Input current for pin having pull-up function activated

All others parameters are extremely stable

- Bandgap reference voltage (and associated voltages)
- 🛰 Chain offset
- Consumption
- ADC performances (Linearity, noise, offset)

Full recovery after annealing

VASP1 is fully functional and specification compliant up to 100 krad(Si)

03/09/2014

THALES ALENIA SPACE

Board and program made by TRAD – Toulouse Measurement made by TRAD – UCL Louvain

SEL test monitoring of supplies

SET test monitoring of :

- >> Analog references
- Erroneous digital conversion

>> SEU testing monitoring of register map program and read back

SEFI monitoring of abnormal behavior during test

03/09/2014

Ref.:0005-0005600133

THALES ALENIA SPACE

🛰 SEL

No SEL @ LET=67.7 MeV.cm²/mg up to fluence of 1E7 ions/cm²

🛰 SEU

- Very low susceptibility of register : SEU LETth = 20.4 MeV.cm²/mg with ssat = 1E-06 cm²
- Reset register sensitivity : LETth> 40.4 MeV.cm²/mg with ssat = 1E-07 cm²
- ➣ The probability of SEU is extremely low

🋰 SET :

- No SET observed on references @ LET=67.7 MeV.cm²/mg
- ADC output code error (criterion > 64 Lsb16) : LETth=10.2 MeV.cm²/mg with ssat = 6E-05 cm²

SEFI

> No SEFI detected in any condition

03/09/2014

THALES ALENIA SPACE

Conclusion on VASP1 design

- Based on the very good VASP0, we managed to complete the design of a Video Acquisition Signal Processor.
- Many thanks to the core team Philippe Ayzac, Anthony Berne, Jorge Guilherme, Claude Neveu, Jean-Marie Saveres, Franck Mariannie, Denis Lagarde, Marc Medard, Michel Carquet, Charly Bonnet, Sylvain Claireux, Michael Laine

49

- Many thanks to the whole team
 - Jean-Marie Garigue, Sophie Di Santo, Emmanuel Liegeon, David Le Du, Laurent Venturini, Laurent Carre, Raoul Velazco, Kholdoun Torki and many other contributors...
 - Many thanks to Wahida Gasti for her exigency and trust despite all challenges

03/09/2014

THALES ALENIA SPACE

eesa

European Space Agency Agence spatiale européenne ThalesAlenia

>> VASP1 datasheet is available :

Title :

VASP1 DATASHEET

- ~ Ref : 100535705O
 - issue 3.2
 - date 2014-07-04

>>> It provides full functional and performance information.

03/09/2014

Ref.:0005-0005600133

THALES ALENIA SPACE

European Space Agency Agence spatiale européenne

eesa

European Space Agency Agence spatiale européenne ThalesAlen

>> VASP1 is designed to be used with CCD and CMOS detectors

VASP is compatible of numerous video processing chain architectures, which depend on :

- Type of detector, CCD or CMOS
- Pixel frequency
- Detector proximity, power and size constraints

Most usual architectures are shown in the following slides.

03/09/2014

Ref.:0005-0005600133

THALES ALENIA SPACE

CCD – Low pixel frequency – Detector proximity

CCD – High pixel frequency – Remote video processing

Example of potential applications :

Earth observation

Scientific mission

55

03/09/2014

CMOS – Low pixel frequency – Detector proximity

THALES ALENIA SPACE

Thales,

A Theles / Firmeccanice Co

la

pace

eesa **European Space Agency**

Agence spatiale européenne

03/09/2014

CMOS – High pixel frequency – Detector proximity

Vb -> Black pixel pedestal

CMOS with redundancy on video processing

Example of potential applications :

- SEN2/MSI
- MTG/FCI
- Most of high performance, high reliability IR imagers

03/09/2014

THALES ALENIA SPACE

58

European Space Agency Agence spatiale européenne

Ref.:0005-0005600133

2 VASP1 for increasing sampling frequency up to 8 MHz

03/09/2014

eesa

European Space Agency Agence spatiale européenne ThalesAlenia Space

FM qualification

Consistent with ESCC Generic Specification No. 9000 (chart F4)

🏊 Foundry

- 🛰 XFAB
- >> ISO 9001:2000/2008
- Automotive referential : ISO TS 16949:2002/2009
- Lot PCM
- Customer alert via automated email

Back-end activities

ESCC Generic Specification No. 9000

- Partners selected to cover all the activities :
 - Packaging
 - FM production and qualification
- : HCM-Systrel
- : SERMA Technologies

European Space Agency Agence spatiale européenne

62

999999

Ref.:0005-0005600133

03/09/2014

European Space Agency Agence spatiale européenne

eesa

Thale

Conclusion

- Objective of a highly integrated video analog front-end is 100% validated
 - ➤ CDS, clamp and buffers
 - ADC and buffers
 - Internal references

European Space Agency ence spatiale européenne 64

- Outstanding performances of 16-bit ADC with minimum power consumption
- TAS radiation hardening design rules allow to stand a high level of hardness, for TID and SEE as well.
- VASP1 Qualification has been performed in full compliance to ECSS-Q-ST-60

 FM production of this complex mixed ASIC for space application is ongoing.
VASP1 FM available in Q2 2015

THALES ALENIA SPACE

Ref.:0005-0005600133

03/09/2014

03/09/2014

Ref.:0005-0005600133

THALES ALENIA SPACE

Let's try VASP1 !

03/09/2014

Ref.:0005-0005600133

THALES ALENIA SPACE

66