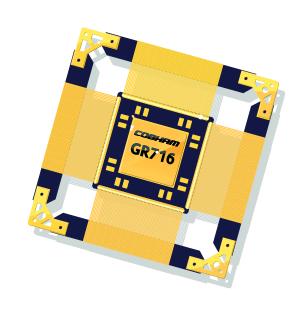


The most important thing we build is trust

Rad-Hard Microcontroller For Space Applications


Fredrik Johansson (SPEAKER) – Cobham Gaisler Jan Andersson – Cobham Gaisler Claudio Monteleone – European Space Agency

Introduction

- Microcontroller for embedded space applications:
 - European Space Agency activity
 - Mixed Analog and Digital ASIC
 - Prototypes available Q2 2017
- Cobham Gaisler has developed digital HW/SW platform
- IMEC provides analog functionality
- GR716 LEON3FT Microcontroller

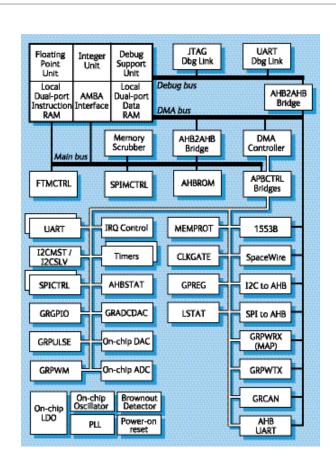
Presentation agenda

- Contents
 - Background
 - Microcontroller features
 - Features Overview
 - Digital functions and interface
 - Analog functions and interface
 - Special features
 - LEONREX
 - Interrupt improvements
 - DMA controllers
 - Configuration
 - Applications
 - Conclusions

Background

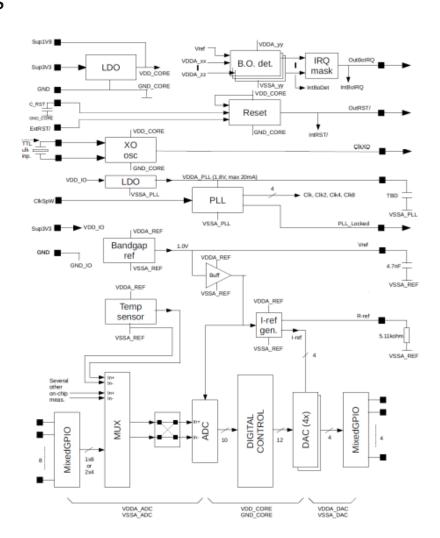
 ESA funded activity "Microcontroller for embedded space applications"

- The objective is to develop a standalone microcontroller suitable for sensor and control applications in space.
- The microcontroller should have good real-time performance and have system level functions to minimize the use of external components
- ESA compiled HW requirements
 - Functional
 - Performance
 - Quality


Feature overview

- Fault-tolerant LEON3 Processor, 32 register windows, 192 KiB EDAC protected tightly coupled memory and support for reduced instruction set
- System frequency up-to 50 MHz and SpaceWire frequency up-to 100Mhz
- 64 Mixed CMOS General purpose inputs and outputs
- Integrated LVDS for SpaceWire and "SPI for Space"
- On-chip ADC, Temperature Sensor, Brown-Out detection, DAC, Oscillator, PLL and support for single 3.3V supply
- Expected to withstand 300krad(Si) and is single event latch-up immune for linear energy transfer values above 118 MeVcm2/mg.
- Reduces mass, space, power and cost due to high level of integration

Digital Function Overview


- LEON3FT Fault-tolerant SPARC V8 processor
- Memory protection units
- Non-intrusive advanced on-chip debug support unit
- 8-bit external PROM/SRAM interface with EDAC BCH protection
- Boot from external SPI or I2C memory protected by EDAC and dual memory redundancy
- SpaceWire interface with time distribution support
- MIL-STD-1553B interface
- CAN 2.0B controller interface
- PacketWire with CRC acceleration support
- Programmable PWM interface
- UARTs, SPI, I2C, GPIO, Timers with Watchdog, Interrupt controller, Status registers, JTAG debug, etc.

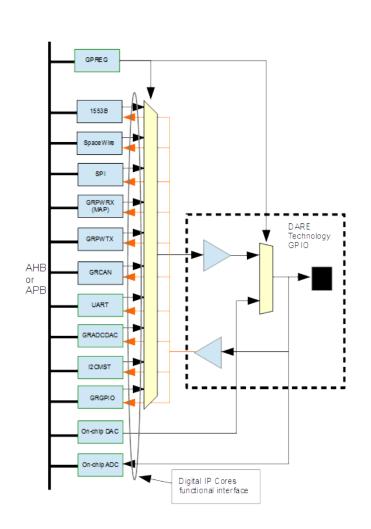
Analog Function Overview

- Mixed General purpose inputs and outputs
 - Programmable internal pullup/pulldown
- Power On Reset
- Brown Out Detection
 - Programmable level detection
- Analog to Digital Converter
 - 12bits @ 200Ksps, 4 channel differential or 8 channel single ended
 - Pre-amplifier (0dB, 6dB or 12dB)
 - Digital Oversampling support (4 bits)
- Digital to Analog converter
 - 12bits @ 3Msps
 - 4 channels
- On-chip regulator for 3.3V single supply
- LVDS Driver and Transmitter
- Integrated PLL
- Temperature sensor

Special Function Overview

LEONREX

- LEON-REX is an in-house development to extend the LEON processor with an reduced instruction set
- Purpose is to improve code density to allow fitting more instructions into local RAM
- Designed to allow "retro-fitting" into LEON3FT pipelines with only minor speed/area penalty
- Allows gradual transition where existing SW environment can be used to unmodified and converted piece by piece to use new instruction set.
- Assembler, compiler and debugger support


Special Function Overview

- Programmable DMA transfers through stand-alone DMA controller
 - Respond to interrupts
 - Polling register
 - Loop support
 - Respond to combination of interrupt and register polling
- Programmable DMA user scenarios
 - Offload processor
 - Autonomous transfers from/to ADC/DAC without CPU intervention
 - Low noise sampling
 - Autonomous transfers between:
 - UART to UART
 - SPI to SPI
 - I2C to I2C
 - Any interface to/from memory or vice versa

Special Function Overview

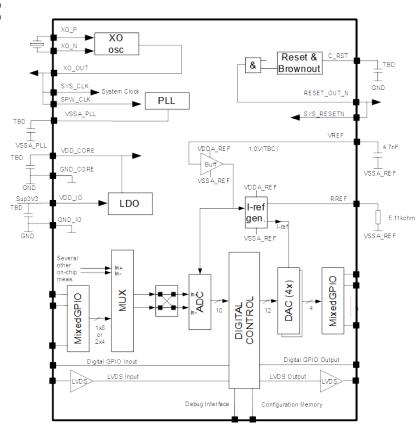
- Programmable IO functionality:
 - Select function per pin
 - 64 Pins dedicated to user functionality
 - 12 of 64 have mixed analog and digital capability
 - LVDS for SPW or SPI for Space
 - Programmable pullup/pulldown
 - LVDS transmitter and receivers for SpaceWire and "SPI for Space"
- Non programmable pins:
 - 4 pins for dedicated SPI ROM
 - Debug interface

Special Function Overview

- Boot and configuration
 - Remote access support:
 - SpaceWire
 - SPI for Space
 - UART
 - I2C
 - Boot from external memory
 - PROM-, SRAM-, MRAM-, SPI- or I2C-memory
 - Dual memory redundancy
 - BCH EDAC protection
 - Checksum protection of application software
 - Internal boot ROM:
 - Setup and configure the device from cold or warm reset
 - System self-tests (CPU, register windows and local instruction and data memory)
 - Assembles Boot Report
 - Sets up C run-time environment

Real-time support and features

- Real-time support and features
 - Single cycle instruction and deterministic program execution
 - Interrupt time-stamping
 - Predictable and low latency interrupt support
 - Atomic operations to local data memory and peripherals
 - OR, AND, XOR and Set&Clear
 - Non-intrusive debug support
 - Digital architecture with dual port data memory to separate DMA transfers from processor transfers


Debug Capabilities

- Debug capabilities
 - Debugging is non-intrusive
 - Plug-n-play and full GRMON2 support
 - Trace bus activity on multiple busses
 - Remote debug without software support via SpaceWire, UART, SPI
 - The LEON3 Statistics Unit (performance counters) is used to count processor events, in order to create performance statistics for various software applications

Microcontroller applications

- Minimum application Requirements:
 - -3.3V supply
 - Frequency resonator in the range of 5Mhz to 25Mhz.
 - De-coupling capacitor
 - Reference resistor
- Minimum application Enables
 - System clock and reset
 - Remote access to GR716 via
 SpaceWire, SPI, UART and I2C
 - Access to all functions

Summary

- GR716 offers great flexibility and supports many different communication standards
- System level functions integrated
- GR716 requires very few external components
- Cobham Gaisler will provide a uC software environment tailored for the GR716
- Prototypes in Q2 2017

Thank you for listening!

For questions contact: info@gaisler.com