
����������		
�������
����
��
����������������
	��������������

�

����������		
�������
����
��
��������������

��
	�������������

�

����������

���������������������� !��

∀���
���� ���������#������#�∃��∃�!∃!�

�
	�%
��&	
����� !���∃����� !��

�
�
�
�
��
��
�	

�
�

��
�
�
�
��
��
��

�������� ���	
����	�������

������ � ����� �

����� ����	��	�� ����� �������

 ������ �!!∀���#

����������	�

����
��� ��������������
����������

��� ���������� ��� 	�
�������
��������
���
����
�
����������
���
�
��
���

���� 	��
����������

∃��%&�∋�(�)�∗�∀��+
, ����−�∀��������������.��.��.�

��∗)��∀�%∗�����������.��������

�������� ���	
����	�������

������ � ����� �

����� ����	��	�� ����� �������

 ������ �!!∀���#

����	
����	�

�������������
������

!������∀�
��
��������
���
##�	�������
�������
��∀�
#
������������ �
�������∃#�����

�

�����
�������∃%����&���##� �∃��������
����
∋ &(����)�∗���#������	�������
��������
�

�!+���,�������
��∃��
�∀���
������
��
��∃∀��
���!�	��������−������−�.��./0.01�

!�
2��3����

��
�����
��∃	�����4����
��5647�
����6�2
�
��

����������� ������

!�
�
��������
���������������∀�
����
������
���������������
�� ���
������
��∀�

�
��������������
�������∃������

��!�
����������
���������������
����∀�
�����������

1���
8�3
�������2���
��
�∀���∀��������������
���∀�
�����
�

�3
������
���

���∀�
������
�����������∀�
������
���
����∀�
���2�������
���9
���

!�
1���
8�3
����∀�
���������������������
����∀��
�������

∃��%&�∋�(�)�∗�∀��+
, ����−�∀��������������.��.��.�

��∗)��∀�%∗�����������.��������

4 www.cobham.com/gaisler

1 FTADDR - Autonomous DDR2/DDR3 Controller with EDAC

1.1 Overview

FTADDR is a memory controller for DDR2 and DDR3 type of SDRAM memory devices. On the
memory side, it presents a DFI interface for connection to an on-chip physical layer (PHY) that man-
ages the low-level timing and data recovery and then provides the I/O buffers. Towards the system-
on-chip, it presents the memory through an AMBA AHB slave interface.

Figure 1. Block diagram of FTADDR Memory controller with two ports and two external banks of 96 bit wide DDR2/
DDR3 x8 RAM devices.

AHB Slave

DDR2/DDR3

AHB1 FTADDR

AHB Slave

AHB2

Buffers

Buffers

DDR2/DDR3
Controller
Back-end

PHY

Front-end

Front-end

DFI

DDR2/DDR3 memory devices (off-chip)

D
Q

[9
5:

0]

D
Q

S
p/

D
Q

S
n/

D
M

[1
1:

0]

[9
5:

88
]

DQ

DQS,DM

[8
7:

80
]

[7
9:

72
]

[7
1:

64
]

[6
3:

56
]

[5
5:

48
]

[4
1:

40
]

[3
9:

32
]

[3
1:

24
]

[2
3:

16
]

[1
5:

8]

[7
:0

]

[1
1]

[1
0]

[9
]

[8
]

[7
]

[6
]

[5
]

[4
]

[3
]

[2
]

[1
]

[0
]

C
Sn

/C
KE

/O
D

T/
C

K[
7:

0]

A[
14

:0
],B

A[
2:

0]
,R

AS
n,

C
AS

n,
W

En
,R

ES
ET

n

[0]

[1]

Internally, the controller is composed of one part clocked by the AMBA clock which manages the
user interface, one part clocked by the DFI clock to manage DDR command scheduling and initializa-
tion, and FIFOs to communicate between these two parts.
The controller is designed to interface 96-bit wide banks of memory, made out of individual memory
devices of width x8 or x4, and then uses a strong error correction code to achieve double-device cor-
rection capability. This allows it to deliver correct data despite one full device failure and random
SEU-induced errors on the other devices. Up to 8 parallel banks (chip selects) are supported by the
controller. Reduced configurations are possible for reduced pin count.
The controller can be used in a multi-ported configuration to support concurrent accesses to different
memory banks.
The controller provides configuration registers accessed through a separate address area in the AHB
slave. The controller is designed to support processor-less configurations and therefore can operate
autonomously with the desired configuration settings supplied as input data at system reset. An inter-
face for direct control of DDR commands and diagnostic reading of data and checkbits is also pro-
vided.

5 www.cobham.com/gaisler

1.2 Operation

1.2.1 Memory bank configurations

Single DDR2/DDR3 SDRAM chips are typically 4,8 or 16 data bits wide. By putting multiple identi-
cal chips side by side, wider SDRAM memory banks can be built. Since the command signals are
common for all chips, the memories behave as one single wide memory chip, called an external bank
or rank. This memory controller supports up to eight identical such memory banks.
Three error detection/correction configurations are supported by the controller: EDAC, parity and
none. The controller can be set into two width settings, full width and half width. The controller can
interface banks of x8 or x4 devices. This combined creates 12 possible configurations, listed below.
Devices of width x16 behave exactly as two x8 devices in terms of protocol and is therefore function-
ally compatible with the controller, however as one device error may affect up to 16 bits, it is not com-
patible with the EDAC schemes employed by the controller.
Note that the x4 mode is intended for use with PHYs designed with 8 data bits per DQS pair using
only the lowest nibble of each byte lane, if the PHY can manage 4 data bits per DQS and present that
as a full DFI data bus then the regular x8 mode can be used.

Table 1. List of memory bank configurations supported by the FTADDR Memory controller

Conf
igur
ation
#

Controller setting
External bank
layout # DQ bits

Device-wide error
correction

enx4 eccen hwidth
Device
type

of
devices Data+Check # Corrected # Detected

1 0 (x8) 10
(EDAC)

0 x8 12 64+32 2 2
2 1 6 32+16 1 1
3 01

(Parity)
0 9 64+8 0 1

4 1 5 32+8 0 1
5 00

(None)
0 8 64+0 0 0

6 1 4 32+0 0 0
7 1 (x4) 10 0 x4 12 32+16 2 2
8 1 6 16+8 1 1
9 01 0 9 32+4 0 1
10 1 5 16+4 0 1
11 00 0 8 32+0 0 0
12 1 4 16+0 0 0

6 www.cobham.com/gaisler

1.2.2 Configurable timing parameters

To provide optimum access cycles for different DDR2/DDR3 devices (and at different frequencies),
seven timing parameters can be programmed through the memory configuration registers. The value
of these fields affects the memory timing as described in table 2. Note that if the CAS latency setting
is changed after initialization, this change needs also to be programmed into the memory chips by
executing the Load Mode Register command.

Table 2. FTADDR programmable DDR2/DDR3 command timings

DDR2/DDR3 SDRAM timing
parameter

Register
fields used

Minimum timing (clocks)
as function of field values

Formula for field value from timing
parameters

CAS latency, CL DDRT,
CASLAT

DDR2: CASLAT
DDR3: CASLAT+4

DDR2: CASLAT=CL
DDR3: CASLAT=CL-4

CAS write latency, CWL
(for DDR2, CWL is fixed to
(CL-1))

DDRT,
CASLAT,
WLAT

DDR2: CASLAT-1
DDR3: WLAT+5

DDR2: WLAT=0 (unused)
DDR3: WLAT=CWL-5

Activate to read/write command
(tRCD)

DRCD DRCD+2 DRCD=ceil(tRCD/tCK)-2

Read to precharge (tRTP)2 DRTP DDR2: DRTP+0
DDR3: DRTP+2

DDR2: DRTP=min(ceil(tRTP/tCK), 2)

DDR3: DRTP=min(ceil(tRTP/tCK)-2, 2)

Write recovery time (tWR) DWR,
DDRT,
CASLAT,
WLAT

DDR2: DWR-CASLAT-1
DDR3: DWR-WLAT-7

DWR=ceil(tWR/tCK)+CWL+2

Precharge to activate (tRP) DRP DRP+3 DRP=ceil(tRP/tCK)-3

Activate to precharge (tRAS) DRAS DRAS+3 DRAS=ceil(tRAS/tCK)-3

Auto-refresh command period
(tRFC)

DRFC DRFC+3 DRFC=ceil(tRFC/tCK)-3

Activate to activate command
period (tRRD)

DRRD DRRD+2 DRRD=ceil(tRRD/tCK)-2

Four activate window (tFAW) DFAW DFAW+DRAS+4 DFAW=max (0,
ceil((tFAW-tRAS)/tCK)-1)

Write to read command delay
(tWTR)

DWTR,
CASLAT,
WLAT

DDR2: DWTR-CASLAT-1
DDR2: DWTR-WLAT-7

DWTR=ceil(tWTR/tCK)+CWL+2

DDR3 mode register set com-
mand update delay (tMOD)1

DMOD DMOD+3 DMOD=tMOD - 3

1 tMOD also exists with a different definition on DDR2, this does not require the DMOD field to be set
2 Note that tRTP is defined differently for DDR2 (with BL8) and DDR3, leading to the 2 cycle difference shown here.

If the fields in table 2 are programmed such that the memory specifications are fulfilled, and periodic
refresh is correctly setup, then the remaining SDRAM command timing parameters will also be met
by design. Table 3 derives example register value for some of the standard speed bins.

Table 3. FTADDR timing setup examples based on JEDEC speed bins

Speed bin DDR2-400B DDR2-800C DDR3-800D DDR3-1600G
Density / Page size 1 Gb / 2 K 1 Gb / 2 K 2 Gb / 2 K 2 Gb / 2 K
Cycle time 5.0 2.5 2.5 1.25 ns
CL 3 4 5 8 nCK
CWL 2 3 5 8 nCK
tRCD 15 10 12.5 10 ns
tRTP 7.5 7.5 10 7.5 ns
tWR 15 15 15 15 ns
tRP 15 12.5 12.5 10 ns
tRAS 40 45 37.5 35 ns
tRFC 127.5 127.5 160 160 ns
tRRD 7.5 7.5 10 6 ns
tFAW 50 45 50 40 ns
tWTR 7.5 7.5 10 7.5 ns
tMOD,DDR3 - - 12 12 nCK
DDRT 0 0 1 1
CASLAT 3 4 1 4
WLAT 0 0 0 3
DRCD 1 2 3 6
DRTP 2 3 2 4
DWR 7 11 13 22
DRP 0 2 2 5
DRAS 5 15 12 25
DRFC 23 48 48 99
DRRD 0 1 2 3
DFAW 1 0 4 3
DWTR 6 8 11 16
DMOD 0 0 9 9
Memory configura-
tion register 1

0x00c0a008 0x0101e081 0x804180a2 0x8133215b

Memory configura-
tion register 2

0x0c7210b8 0x10b32180 0x16d23380 0x21646318

Memory configura-
tion register 3

0x00000000 0x00000000 0x00000009 0x00000009

7 www.cobham.com/gaisler

1.2.3 Registered SDRAM

Registered memory modules (RDIMM:s) have one cycle extra latency on the control signals due to
the external register. They can be supported with this core by setting the REG control register bit.
When set this shifts the internal latency used by the controller one cycle relative to the latency pro-
grammed to the memory, which compensates for the delay.
This should not be confused with Fully-Buffered DDR2/DDR3 memory, which uses a different proto-
col and is not supported by this controller.

8 www.cobham.com/gaisler

1.2.4 On-die termination management

At the memory device side, for each chip select the controller can be set up to program different val-
ues of on-die termination (Rtt, and for DDR3 also Rtt_wr) and output inpedance setting into the mode
register.
To control the on-die termination in the memory devices (via the ODT control signal), the configura-
tion registers of the controller contain an ODT enable matrix deciding which of the ODT signals are
enabled when a specific chip select is being read and written. There is also a default ODT configura-
tion set when neither reading nor writing. By default ODT is always off.
The timing of the ODT signal enabling relative to the read and write command is programmable. The
earliest supported switching of the ODT signals are one cycle after the command. For low-latency
DDR2 writes this may not be fast enough to switch on the ODT in time, in which case the default
ODT configuration should be set to the write configuration instead so that it is set already when the
command is given.
A similar configuration is available to enable the controller-side termination on reads, if such termina-
tion exist in the PHY.
For DDR3 memory, the Rtt setting and ODT enable state desired during write leveling can be selected
separately from the setting used during functional mode. Note that the JEDEC standard allows only a
subset of the Rtt settings during write leveling.

1.2.5 Setup

The controller is designed to be configurable using two possible means:
• Setting up all configuration register’s reset values using external signals, then using the control-

ler directly. The external signals can be either tied to fixed values at higher level in the design,
tied to top-level inputs or driven by other logic at the top level of the design

• Configuring parameters over the on-chip bus from processor or other SoC resource
The type of memory (DDR2 or DDR3) and the external bank configuration (see section 1.2.1) must
be set up before starting up the controller and must remain at the same setting, while other settings can
be modified at any time. For correct operation, the timing and size parameters must be set to match
the device used, see sections 1.2.2 and 1.2.8.

1.2.6 Memory device initialization and management

Assuming the controller is setup correctly, the controller will manage initialization, refresh and other
housekeeping functions. For details on initialization and low-level DDR handling, see section 1.3

1.2.7 Data access

Data accesses to the AHB slave ports are translated to DDR memory accesses by the controller,
towards the rest of the system-on-chip the DDR memory will appear as a flat memory space. On the
DDR side, all accesses are bursts of length 8, while on the AHB side any length is supported and will
be mapped to the necessary number of bursts.
In the multi-ported configuration, each slave port maps to a separate fraction of the available memory.
This is done by mapping different ports to different internal banks. Having a fixed mapping all the
way from front-end ports minimizes the timing interference between the ports, since accesses on dif-
ferent ports can never map to the same memory row. Accesses can always be done overlapping and
therefore the worst case interference becomes only the sum of the maximum data burst length of the
other ports rather than one full row open-close cycle for each other port.
For example, with DDR3-800 memory, burst length 8, four ports, the worst case interference becomes
3 ports*(4 cycles burst + 2 cycles turnaround) = 18 DDR cycles = 45 ns, while with a any-to-any map-
ping the worst case interference would be (all writing to different rows in same internal bank) 3 ports

9 www.cobham.com/gaisler

* 25 cycles = 75 cycles = 187.5 ns. The difference gets worse with increasing DDR memory clock
rate.

1.2.8 Logical address to memory address mapping

The controller uses a linear address mapping scheme between on-chip bus addresses and external
memory addresses. From the least significant bits upward the bits are interpreted as:
• Byte lane on DDR bus. Depending on external bank configuration (see section 1.2.1) the data

width is 16,32 or 64 bits making this field take up the lowest 2-4 bits of the address.
• Column address. Width of this field depends on the number of columns in the external memory

devices, between 9-12 bits
• Row address. Width of this field depends on the number of rows in the external memory,

between 12-16 bits
• Internal bank. In multi-port configurations the least significant bits of the bank number is implied

by which port is accessed and is therefore not included in the address translation. Number of
banks can be either 4 or 8 for DDR2, and is always 8 for DDR3. This leads to between 0-3
address bits.

• External bank/chip select. Up to 8 are supported, leading to 3 address bits for this field.
To achieve a correct address translation without holes or aliases, the AHB address decode register
fields need to be set up to match the external memory devices. The algorithm to do this is as follows:
1. Set COLBASE to match the width of the data bus (not including ECC bits).
2. Set ROWBASE so that (9+ROWBASE-COLBASE) matches the number of column address bits
on the DDR memories (bits actually used for addressing the column, not counting that A(10) and
A(12) are used for auto-precharge and burst-chop indication).
3. Set BANKBASE so that (10+BANKBASE-ROWBASE) matches the number of row address
bits on the DDR memories.
4. Set CSBASE so that (2^(CSBASE-BANKBASE)+NPORTS) matches the number of internal
banks (4 or 8) or the DDR memories.
5. If the resulting CSBASE value from step 4 became 11 or higher then subtract (CSBASE-10)
from both CSBASE and BANKBASE

10 www.cobham.com/gaisler

1.3 Back-end functional description

1.3.1 Controller back-end states

From a usage perspective, the DDR side of the controller follows the simplified state diagram shown
in figure 2.

Figure 2. Simplified state diagram of DDR2/DDR3 controller back-end

PreInit

ClkWait

DoInit

TrainFullDQS

TrainFullWL

Idle

InRequest

TrainIncRLReopenRows

ServicePend

CloseRows

Refresh

RewriteMR

TrainIncDQS

ManualMode

TrainFullRL

DiagAcc

TrainIncWL

PreInit - the controller waits for the configuration settings to be set and the pwron bit to be set in the
controller. Note that if pwron is set high by the signal interface then this state will be left immediately
after reset.
ClkWait - wait until the minimum time has passed from power-on reset before starting the initializa-
tion sequence as required by the JEDEC standard. This can be skipped for testing/simulation purposes
by writing into the training time counter register while in this state.
DoInit - Initialization sequence according to the selected memory standard.
TrainFullDQS - Training of DQS gate timing
TrainFullRL - Training of read data leveling (DDR3 only)
TrainFullWL - Training of write data leveling (DDR3 only)
Idle - Waiting for incoming request or service interval timer

11 www.cobham.com/gaisler

InRequest - Serving one or more read/write requests. Can start additional requests to other banks in
parallel as decided by internal scheduler and timers.
ServicePend - Serving one or more read/write requests, the service interval timer has expired. New
requests are not accepted.
CloseRows - At start of service interval, if any rows are then send a close all rows command to all
chip selects. Wait for any tRP delay timers to expire.
Refresh - Send auto-refresh command to all memory devices, if configured to do so at this service
interval.
TrainIncDQS - Performing periodic incremental DQS gate delay adjustment, if configured to do so
at this service interval.
TrainIncRL - Performing periodic incremental read data leveling (DDR3 only), if configured to do
so at this service interval.
TrainIncWL - Performing periodic incremental write data leveling (DDR3 only), if configured to do
so at this service interval.
ReopenRows - Re-open any of the open rows that were closed at the beginning of the service interval.
If the controller can see that the next command coming in on a port will result in closing the row (a
row close command, or a row open command to a different row), then the row will not be re-opened.
DiagAcc - Perform diagnostic access requested by user.
ManualMode - Performing manual or diagnostic command requested by user (AHB frontend)

1.3.2 Data transfers

The controller contains four bank tracking units to keep track of ongoing data transfers and currently
opened rows in the external memory. Each tracking unit has a fixed mapping to a specific set of inter-
nal banks in the memory devices, based on the two least significant bits of the internal bank number.
At most one opened row at a time can be tracked by each bank tracking unit.
A command scheduler module looks at the state of the bank tracking units, and schedules commands
to the DDR command bus as they are ready and can be issued without causing data bus collisions with
other ongoing commands. In case more than one bank tracker has a command ready the same cycle,
the scheduler will use a round-robin arbiter as a tie-breaker.
The front-end ports are mapped to the bank tracking units in a fixed 1:4, 1:2, or 1:1 mapping depend-
ing on how many front-end ports are implemented in the controller, so each front-end port will map to
a separate slice of the external memory.

1.3.3 Service intervals

There are several functions in the controller that need to be done periodically, and that require the
memory devices to be in idle state so can not be done in parallel with regular data transfers. To handle
this efficiently, these are handled in common service intervals. The number of cycles per interval is
can be set through configuration registers.
You do not need to do every function at every service interval. For each of the functions (refresh,
incremental training, mode register reprogramming), you can configure the frequency as an integer
multiple of service intervals. For example, you can set refresh to be done every service interval and
incremental training every third interval. Service intervals where nothing is to be done are optimized
away so there is no blocking of transfers in that case.
Within each service iteration, all currently opened rows are closed, the pending operations are per-
formed, and the rows are then re-opened to resume operation. To avoid unnecessary re-opening of
rows just in order to close them shortly after, the controller peeks at the following command in the
command FIFOs, and if that is a row-close or row-open command, the re-opening is skipped for that
bank machine. This optimization can be disabled with the FREOP configuration register bit.

12 www.cobham.com/gaisler

It is possible to postpone service iterations using the SHOLD configuration bit. The pending bits and
the time counting will still proceed normally. Since there is only a single pending bit for each refresh
(or other action), suspending the service iteration for longer than the refresh interval can result in los-
ing a pending refresh command leading to lower refresh rate than expected. Therefore when using the
SHOLD function, the user either has to ensure the time is shorter than the refresh interval or the user
needs to manually trigger additional refreshes to compensate for the lost refresh commands.

1.3.4 Refresh

The controller contains a refresh function that during a service interval issues an AUTO-REFRESH
command to all SDRAM banks. Depending on SDRAM type, the required average period is typically
7.8 us.

1.3.5 ZQ calibration

For DDR3 memories, the controller can be programmed to issue ZQ calibration short (ZQCS) com-
mands periodically at service intervals in order to prevent the input/output drivers on the memory
devices from drifting out of specification. ZQ calibration short (ZQCS) and ZQ calibration long
(ZQCL) commands can also be manually commanded through the command register. One ZQCL
command is always issued during initialization as this is required by the JEDEC standard.

1.3.6 Periodic mode register reprogramming

The controller can be set up to reprogram the memory device’s mode registers periodically during ser-
vice intervals to ensure they are set to correct values.

1.3.7 Delay training

Depending on the PHY design and of the speed of the DDR interface, training of delays may be
required. The controller has been designed to support such training.
If the PHY uses MC evaluation mode (DFI mode 01), the training is implemented in a custom sub-
block of the controller with an algorithm designed for the specific PHY. For a new PHY that requires
this a new phyimpl constant must be defined to the controller which instantiates the new sub-block.
In other training modes (PHY evaluation, PHY independent, and None), the calibration is imple-
mented inside the PHY and the controller only provides some supporting services. This is supported
in the generic DFI implementation of the controller without any custom logic.
Incremental training can be done periodically within service intervals to track changes in delays. At
each incremental training, a fine adjustment of DQS delays and write leveling is performed. The con-
troller can also be setup to re-do the full training with some interval.

1.3.8 User specified commands

The user can force a refresh or mode register load by writing to command register bits. The controller
will schedule the requested command as soon as possible, letting any pending data transfers complete,
and ensure the memory timing parameters are respected.

1.3.9 Diagnostic access

The controller has a diagnostic interface where you can command a read or write from a specific loca-
tion via the register interface. The diagnostic interface can be used safely while the core is running
normally.
The procedure for performing a diagnostic access is:

1. Write to the Diagnostic access control register 1, set the DIAGCS,DIAGBANK,DIAGROW
fields with the desired location

13 www.cobham.com/gaisler

2. If it’s a write, set up the diagnostic checkbit and data registers with the desired data
3. Write to the Diagnostic access control register 2, DIAGCOL field with the desired column,
DODG=1, DGWR=1/0 depending on if it’s a read or write
4. Poll the diagnostic access status register until the DDONE field is 1.
5. If it was a read, the diagnostic checkbit and data registers hold the read data

The diagnostic access is handled similar to service iterations, current accesses complete, all rows are
closed, the diagnostic access is performed, and rows are then re-opened.
The unit of the diagnostic access is always a 64-bit word with the corresponding checkbits. When
reading with EDAC enabled, the EDAC decoder error outputs can be seen in the diagnostic status reg-
ister after the access, however the data that is stored in the diagnostic data/checkbit registers is always
uncorrected.
In half-width mode, each diagnostic access will read or write two columns to get a complete EDAC
codeword. The column that is addressed should always be even in this mode. Otherwise the diagnos-
tic register interface behaves exactly the same towards the user.
The diagnostic interface ignores the x4 mode setting, and will handle it like the x8 mode. The user has
to ignore the top nibbles of the data and checkbits, and mask the corresponding correctable error bits,
when using diagnostic accesses in x4 mode.

1.3.10 Manual mode

A raw interface allows to manually perform arbitrary DDR commands such as mode register write,
auto refresh, activate, RAS, read/write, and precharge. Note that these manual commands are not
managed by the bank tracker and it’s the responsibility of the user to not violate the SDRAM protocol.
While manual mode is activated, normal accesses will be blocked. Also, no refresh or other service
commands will be performed during that time
To activate the manual mode, the user writes 1 to the MANE configuration register field, and then
polls the Backend status register until the back-end has entered the manual mode. To return back to
normal mode, write 0 to the MANE register field.
In manual mode, the address lines are continuously driven with the value of the DIAGROW field, the
bank address lines are driven with the value of the DIAGBANK field. The chip select lines are nor-
mally driven high but can be asserted for one cycle by writing into the MANUAL_CSN field.
It is possible to command a read or write command and transfer data with proper DQS strobe genera-
tion. This is done by asserting the MRDC or MWDC fields at the same time as giving the CAS com-
mand. The data transfer is handled in a similar way as for a diagnostic access, and will use the
diagnostic data and checkbit registers (however the diagnostic status register is not modified).

1.3.11 PHY-specific support

The controller has a phyimpl configuration option specifying if a specific kind of PHY is used. The
back-end adapts the default control signal timing (via the timing masks) and may also adjust to other
‘quirks’ in the specific PHY. Some PHY implementations also provide dedicated configuration or sta-
tus registers that can be accessed via the PHY indirect address and data registers, those are listed in
table 12.

14 www.cobham.com/gaisler

Currently the PHYs in table 4 are implemented.

Table 4. FTADDR back-end PHY implementations supported

Value Name
PHY-specific
registers Description

0 Generic No Generic DFI PHY interface
1 ISD65 Yes ISD S.A. DDR PHY for C65SPACE.
2 Altera UniPhy/AFI

interface
No For Altera FPGAs. Can interface a full-rate PHY generated

by the Quartus UniPhy MegaWizard

1.3.12 Memory reboot support

The controller has features to support resetting and possibly also power cycling of individual byte
lanes of memory, in order to recover from permanent SEFI errors. While rebooting one byte lane, the
other memories are held in self refresh mode to preserve their contents, and the rebooted byte lane’s
contents can be recovered using the EDAC.
Using the reboot feature requires special support both on the DDR PHY, system design and on the
board level. Instead of a separate RESET and CKE signal per rank, there needs to be a separate
RESET and CKE signal per byte slice but shared over all ranks. These are output from the controller
on the xdfi_bl_resetn and xdfi_bl_cke signals with the same timings as the regular DFI dfi_reset_n
and dfi_cke signals. In addition, there needs to be support for either driving both clk_p and clk_n low,
or tristating them, this is activated through the additional xdfi_clk_zero signal. An additional output
signal xdfi_bl_pdn signals when the memory should be power cycled, this needs to propagate out to
the board level.
If the reboot support is not required, the added signals can be ignored and the standard DFI signals
used instead. Using the reboot function will then not have any useful effect, it will just put the memo-
ries into self-refresh mode, and then after some time leave self-refresh mode and go back into normal
operation.

1.3.13 Internal assertion error flags

There are internal assertion error flags in the back-end status register, that are set when an internally
inconsistent state is detected. These are intended mainly for use as assertions in development (for
checking after tests) and for debugging malfunctioning systems. The conditions for these flags should
never occur under correct operation, and if one of the conditions have occurred then a full system
reset is required to get back to a known good state. A brief description of each flag is provided in table
5 below.

Table 5. Internal assertion error flags for back-end

Bit Description summary
5 Back-end asserted write into status FIFO when FIFO signaled full
4 Back-end asserted write into prefetch data FIFO when FIFO signaled full.
3 Back-end asserted write into read data FIFO when FIFO signaled full
2 Write command received from front-end but expected amount of write data not in write data FIFO.
1 Read data valid received from PHY when no read data has been requested.
0 Currently unused (always zero)

15 www.cobham.com/gaisler

1.4 Front-end functional description

1.4.1 AHB slave ports

Each port implements an AMBA 2.0 AHB compliant slave interface. The AHB interface can have
either 32, 64 or 128 bits width on the data bus, selected through the ahbbits VHDL generic.
The GRLIB version of the controller wraps the AHB interface into the GRLIB AMBA record format
and also includes the additional sideband signals used for the GRLIB plug-n-play extension to
AMBA.
The memory mapped area supports all types of accesses, however some result in suboptimal perfor-
mance due to read-modify-write cycles or emulating bursts using single cycle accesses or shorter
bursts internally. For optimum performance, the following rules should be followed:
• Accesses should be made using the full width of the AHB data bus as HSIZE.
• Wrapping bursts should not be used.

1.4.2 Response patterns

The slave port will respond with wait states using the HREADY signal whenever needed. Retry and
split responses are never used.
ERROR responses are used when accessing outside the available memory range, and also in case of
EDAC uncorrectable error. The error responses can be disabled using configuration register bits.

1.4.3 Memory read and write

When reading from the memory, the slave port will give wait states until the data is available and then
deliver the data streamed out of the internal FIFO as soon as it is ready. The master should be prepared
to handle wait states issued at any time within the burst.
When writing to memory, the controller will normally accept the write (single or burst) without wait-
states, however if the command FIFO is full then it will issue wait states.
When EDAC is enabled, writes smaller than the codeword size will result in read-modify-write
cycles. These are queued internally and will not cause wait states unless the internal FIFOs are full. If
the read part of the RMW cycle detects an uncorrectable error, the memory location will be left
unmodified and the error will be logged in the core’s register and an interrupt will be issued.

1.4.4 Write buffering

Normally any number of writes up to the capacity of the internal buffer can be accepted, however
through a configuration register, a maximum limit can be set on the number of queued writes in the
buffer, where further accesses will cause wait states. At a minimum, the limit can be set to allow only
one buffered write.
The amount of buffering should not be more than needed to mask the latency through the controller
and to cover AHB bus timing jitter (unrelated accesses causing gaps in the write stream). Increasing
the buffering beyond this will only result in degrading worst-case read latency without improving
throughput.

1.4.5 Read pre-fetching

To better support masters streaming long packets of data without requiring very long burst lengths, the
AHB slave port supports a read pre-fetching feature. When a read burst is made, the port will queue
up one or more additional number of bursts of the same length to the back-end and store these in a
prefetch buffer when the data arrives. When the same master comes back and requests the following
data, it will then serve this from the prefetch buffer and instead request an additional read burst after
the currently prefetched point.

16 www.cobham.com/gaisler

The controller has separate tracking registers for each master in order to detect when prefetching
should be activated. The prefetching is activated when the same master makes three read bursts that
are back-to-back in terms of address. A prefetch master mask configuration register allows to limit
which masters can activate the pre-fetching logic so that random access masters such as caches can be
prevented from activating it.
Only one prefetching stream can be ongoing at the same time on each AHB port. The current prefetch
is cancelled when the currently prefetching master makes an access which does not match the contin-
ued stream, or when a prefetch time-out counter expires without the master coming in and requesting
data from the next address in the stream. If a write to the same row as is being prefetched is performed
on the same AHB port by any master then the prefetch data is discarded in order to prevent serving
out-of-date data.
The prefetching continues only to the end of the row and does not cross across row boundaries. It will
need to be re-activated on the following row in the same way as described above.
The number of additional read bursts to prefetch is controlled through a configuration register.

1.4.6 Configuration area

Each slave port provides two separate memory areas, one memory mapped area for regular access and
one register area for configuration register access.
In the stand-alone version, the ahb_hsel_reg signal selects if memory or registers are accessed. This
signal is only considered when the ahb_hsel signal is also asserted on the same cycle. In the GRLIB
version, the two AHB areas to two different BARs of the slave similar to other memory controller IP
in the library.
The configuration register area must always only be accessed using 32-bit wide accesses, however
both single accesses and bursts are permitted.
Any port can access all of the configuration registers, and the register interface is internally arbitrated
between the ports.

1.4.7 Multi-ported configuration

In multi-ported configuration, multiple AHB slave ports will be presented. The slave ports are logi-
cally separated so they can be either tied to the same bus, or to different AHB buses.

1.5 Error detection and correction features

1.5.1 Overview

The memory controller can be configured to support bit-error tolerant operation by choosing a suit-
able external memory configuration (see section 1.2.1). In this mode, the DDR data bus is widened
and the extra bits are used to store 32 checkbits corresponding to each 64 bit data word.
When writing, the controller generates the checkbits and stores them along with the data on the added
part of the data bus. When reading, the controller will transparently correct any correctable bit errors
and provide the corrected data on the AHB bus. An extra corrected error output signal is asserted
when a correctable read error occurs, at the same cycle as the corrected data is delivered. This can be
connected to an interrupt input or to a memory scrubber.
A scrubber function is built into the core that periodically reads from incrementing addresses and
writes the data back in case a correctable error is detected. The rate of the scrubbing is programmable
and it can also be disabled. The core can also be configured to automatically write back to memory
any correctable error that is detected on read.
When performing a write smaller than the codeword size of 64 bits, the controller will automatically
perform a read-correct-modify-write cycle to correctly update the checkbits.

17 www.cobham.com/gaisler

1.5.2 Correctable error handling

The intent is for error correction to be transparent to the application, and the controller delivers cor-
rected data with the same timing as uncorrected data. There is no automatic write-back on correctable
errors, the controller instead provides a periodic scrubbing function that should be used to prevent
error build-up.
A separate ahb_ce output signal is asserted in parallel with the data, this can be used for handling
externally to the controller. An internal register holds the address of the correctable error, and an
optional interrupt can also be used if desired by the application. All of these features are optional and
the controller will work properly even if they are not used.

1.5.3 Uncorrectable error handling

Uncorrectable errors occur when reading a data and checkbit combination that does not match any
possible data with any possible combination of errors. To trigger an uncorrectable error, three bytes or
more of the data bus must be incorrect (in the default configuration, see table 1 for other configura-
tions). Note that the design intent of the controller with features such as strong EDAC, scrubbing, and
SEFI handling is to make the risk of uncorrectable errors occurring as low as possible.
In case of uncorrectable error, this is by default signaled by giving an AHB error response to the mas-
ter. This behavior can be disabled by configuration and the core will in that case “respond in form”
with the corrupted data. A separate sideband signal for uncorrectable errors is also available for cus-
tom handling at the SoC level. An uncorrectable error register is included in the core where software
can see where the last (if any) uncorrectable error occurred, for diagnosis.
In case of an uncorrectable error detected during a read-modify-write cycle, the modify-write part is
cancelled and the original contents of the address (containing error) is left untouched, to be found later
by the scrubber or a read access.

1.5.4 EDAC details

The implemented EDAC is based on a Reed-Solomon code implemented over the GF2^4 Galois field,
with the capability to correct two symbol errors, one symbol corresponding to four binary bits of data.
The code has theoretically 11 data symbols and 4 check symbols, however it is shortened to 8 data
symbols and 4 check symbols.
The field generating polynomial for the Galois field is a^ 4+a+1, and each nibble of data in and out of
the controller is interpreted as powers of alpha, so {b3,b2,b1,b0} = b3*a^3+b2*a^2+b1*a^1+b0. The
Reed-Solomon code in this field is defined by the generating polynomial
(x+a^6)(x+a^7)(x+a^8)(x+a^9).
To support correction of byte-wide errors, the code is interleaved by a factor of two, resulting in a
code with 2*8 data symbols * 4 bit = 64 data bits and 2*4 check symbols * 4 bits/symbol = 32 check
bits. The interleaved code can then correct two different byte-wide errors in the data.

1.5.5 Internal self-checking

The external memory EDAC contains an internal self-check function where the data after decoding is
re-encoded and compared with the original read-in data and checkbits. If they differ in some other
location than one where an error was corrected, then the EDAC will signal an internal consistency
error.
The core can be configured to automatically retry the read transfer when this happens. If the retry is
disabled, or if there is another consistency error when the retry is made, this will be treated as an
uncorrectable error (section 1.5.3) and in addition a consistency error IRQ is signaled.

18 www.cobham.com/gaisler

1.5.6 Diagnostic interface

The controller supports a diagnostic interface where the checkbits and data bits can be read and writ-
ten separately with the EDAC bypassed to allow error injection. Accesses to the diagnostic area can
be freely mixed with normal memory access which simplifies many test scenarios. Further details are
in the back-end description, section 1.3.9.

1.5.7 Initialization

When EDAC is used, the memory must be initialized with correct checkbits. An initialization func-
tion that clears the entire memory is implemented in the front-end. This can be set up to initialize with
a custom pattern, or to initialize each address with the row/column number of that address.
The controller can be set up to perform a read back immediately after the initialization to verify that
the expected data is returned.

1.5.8 Scrubbing

The controller has a built-in scrubber implemented in the front-end side. This reads through all of the
memory at a programmable rate, and if any correctable errors are detected, then the corrected data is
written back to the same address. The scrubber is also used as the basis for the SEFI handling func-
tionality.

1.5.9 Correctable error counting

There are two separate sets of counters that count statistics on correctable errors, the byte lane error
counters, and the address error counters. Both of these will be updated whenever the scrubber finds a
correctable error. Note that these are only updated by scrubber accesses and not updated when a regu-
lar access triggers a correctable error. The reason for that is to avoid large up-counts if the same error
location is read multiple times, which could interfere with the statistics and falsely trigger the SEFI
detection logic.

1.5.10 Byte lane error counters

The controller has 12 wrapping counters that track the number of correctable errors that the scrubber
finds in each byte of the DDR data bus, plus an additional counter called the watermark that tracks the
value of the slowest moving counter. These counters are combined to implement a statistical SEFI
detection scheme, whích triggers when the byte lane with the most correctable errors has 64 errors
more than the byte lane with the least amount of correctable errors.
The watermark is implemented simply by starting at zero after reset like the other counters, and each
cycle checking if it is equal to any of the 12 byte lane counters. If the watermark is not equal to any of
the counters, then the slowest moving counter must have incremented and the watermark is also incre-
mented to track it.
If one byte lane has a much higher frequency of errors than the others, then that byte lane’s error
counter will eventually wrap around and count up to the watermark value. That is used as an indica-
tion that a SEFI has occurred on that byte lane, which is managed by the SEFI handling state machine.
An equivalent scheme would be to have byte lane counters where you subtract one from each counter
once all counters are non-zero and trigger when one counter reaches 64. Each counter minus the
watermark (modulo 64) can be viewed as such a counter.
Note that these counters only count errors found by the scrubber, in order to guarantee proportional
checking of errors across the whole address space, as otherwise repeated reads of one address with a
correctable error could quickly increment a specific counter.

19 www.cobham.com/gaisler

1.5.11 SEFI handling

A special state machine is implemented to attempt SEFI recovery when detected by the byte lane error
counters. Note that due to the powerful EDAC and other features implemented in the controller, a sin-
gle SEFI plus additional SEUs in parallel can be handled implicitly by the controller, the purpose of
the SEFI recovery features is to achieve a faster repair in case of recoverable SEFI. The SEFI recov-
ery actions can be disabled in the controller if unwanted, and the SEFI detection logic can then be
used in a passive mode for diagnostic purposes instead.
When a SEFI is detected using the byte lane error counters, the SEFI handler it will first request a
recalibration of the memory, and a re-write of the memory mode registers from the controller back-
end. When this is complete, the scrubber will be setup to perform an accelerated scrub run over the
whole memory range in order to quickly regenerate the check bits in case the SEFI was temporary.
After the regeneration, the scrubber will again run in the normal pace. If a full cycle (from start
adddress to end address) of the scrubber is performed without the SEFI detection triggering on the
byte lane that had the SEFI, then it is considered to be ‘healed’ from the SEFI. If the SEFI detection
again triggered, it is considered to have a permanent SEFI. When that happens, the controller will
issue a permanent SEFI interrupt. and can also optionally be configured to disable the output drivers
for that byte-lane in the backend. The controller will continue tracking errors in the byte lane and may
find it to have healed at a later stage.

1.5.12 PHY-based SEFI detection

The controller supports an optional sideband signal from the PHY indicating that it had a read failure
on a byte lane, if available in the implementation then this can be used to trigger the SEFI handling
functionality independently of the error counting. A dedicated interrupt also exists for this condition
(back-end error signaled by PHY).

1.5.13 Address error counters

A second set of correctable error counters updated by the scrubber are also provided. These are satu-
rating signed counters that will increase or decrease depending on which address the error occurred
on. One counter is implemented for each address bit in the memory address space (CS/bank/row/col-
umn). If a correctable error is found where the corresponding address bit is 0, that counter is decre-
mented, while if the address bit was 1, that counter is incremented. As long as errors are occurring
randomly over the address space, these counters will vary randomly around zero, but if more errors
happens when an address bit has one value, the corresponding counter will tend towards its maximum
or minimum value.
The main purpose of these counters are for identifying the likely address when a SEFI is detected, and
also to collect statistics over time to detect if some parts of memory are weaker than others.

1.6 Front-end to back-end interface implementation

1.6.1 Command FIFO format

Each port of the front-end sends commands to the back-end using a FIFO. The command words of the
FIFO have been designed to match closely (but not exactly) with the commands going out to the
memory.
The command words containing the following fields:
• Command ID (4-bit tag)
• 3-bit command word, similar to the (RASn,CASn,WEn) signals of the DDR memory interface
• Chip-select ID (number of bits depending on number of CS supported)
• Bank address bits not implied by port ID

20 www.cobham.com/gaisler

• Address bits (16 bits)
• A special read-modify-write flag (1 bit)
• Prefetch flag (1 bit)

1.6.2 Commands

In normal operation, the commands row-open (011), read (101), write (100), and row-close (010) are
issued.
The row-open command opens a specific CS, bank and row. Note that each port can only have one
row open. If a new row-open command comes in when a port is open, the other open row will first be
closed by the back-end.
The read command causes a read burst to be performed by the back-end. A row must have been
selected already using the row-open command. The read out data is normally written into the read-
data FIFO, unless the RMW flag or the prefetch flag is set. Note that the CS and bank fields are
ignored for this command (these fields have special use for precharging, see below)
The write command performs a write burst to memory, analogous to the read command. The write
data must have been placed in the write data FIFO before sending this command.
The row close command will close the currently opened row for the port, if no port is opened it will
have no effect. Note that since the back-end does not require this between row-open commands, this is
only needed when the port is idle to ensure that the row is not kept opened indefinitely. This also gives
the front-end responsibility to manage the row-open policy of the controller.
Having a separate command to select/open the row has some benefits for performance. The front-end
can be optimized to transfer the CS,bank,row immediately, and other work such as determining the
exact column and transferring write data into the FIFO can be done in parallel with the back-end
opning the row.

1.6.3 Response FIFO format

The response FIFO provides a response word for each command. This consists of:
• Command ID (4-bit)
• Result code (3-bit)
• Correctable error byte lane mask (12-bit)
The result code can be one of: OK (000), uncorrectable error (001), EDAC consistency error (010),
TBD (011,100,101,110), internal fault detected (111)

1.6.4 Read-data FIFO format

The read-data FIFO words consists of:
• Data word 128-bit
• Correctable error mask (48-bit)
• Uncorrectable error indicator (2-bit)
• Last of burst indicator (1 bit)
Note that the data word is always 128 bits regardless of the width setting of the DDR memory, there-
fore each read burst will generate 2 or 4 words in the FIFO.
Which byte lanes had the correctable errors can be seen in the response word.

1.6.5 Write-data FIFO format

The write-data FIFO words consists of:

21 www.cobham.com/gaisler

• Data word 128-bit
• Data byte valid 16-bit
The data word is always 128 bits wide regardless of the width setting of the DDR memory, therefore
each write command must have 2 or 4 words in this FIFO corresponding to the data. The front-end
must always pad data to full bursts by adding words with all valid bits set to 0.

1.6.6 Read-modify-write accesses

The controller allows read-modify-write accesses (8/16/32-bit writes) to be queued up internally with-
out stalling the AHB bus. They are performed without doing round-trips up to the AHB front-end
which allows them to be done much more efficiently.
Read-modify-write accesses are commanded by:
1. in the command FIFO, put a row-open command to the command FIFO (unless the desired row is
already open)
2. in the command FIFO, put a read command for the desired column with the RMW flag bit set to 1.
This will make the back-end store the first word of the read burst into an internal buffer.
3. in the write data FIFO, store the partial codeword with corresponding mask as the first word of the
write burst, and then pad with additional words with all bytes masked to make a full burst. (this can be
done in parallel with steps 1 and 2)
4. in the command FIFO, put a write command to the same column with RMW flag set to 0.
5. once the RMW is completed a result word will be put into the response FIFO

1.6.7 Prefetching

In order to command a prefetch, set the prefetch bit to 1 in the commmand word. The read out data
will not be stored in the read data FIFO but in a separate two-port prefetch buffer RAM. The RAM
might hold multiple bursts, CS,Bank and the top bits of the address part of the read command word
that are otherwise ignored are used as address bits into the prefetch buffer in this case.

1.6.8 Register interface

The configuration registers in the back-end are accessed using a simple handshaked interface, allow-
ing one write or one read at a time. Only one register interface is implemented and is internally multi-
plexed in the front-end between the user ports and the SEFI handler state machine.

1.7 Implementation

1.7.1 Code structure

The core can be built either as part of a GRLIB design, or stand-alone. For this there are two different
top level entities, ftaddr_gr which uses the GRLIB AMBA record, and the techmap library for FIFOs
and buffers, and ftaddr_sa, which is a stand-alone implementation that only depends on the IEEE stan-
dard libraries and uses a custom technology-specific VHDL file for FIFOs.
The main part of the controller logic is shared between the two versions and are contained in the enti-
ties ftaddr_fe_ahb (AHB-clocked part), ftaddr_be (DFI-clocked part), ftaddr_edac (EDAC sub-block
of ftaddr_be) and the package ftaddr_int.
The GRLIB top level instantiates the syncfifo_2p component from the techmap library to implement
FIFOs, and syncram_2p to implement dual-ported memory. To select technology you pass in a tech
generic.
The stand-alone top level instead instantiates a block called ftaddr_sa_fifo to implement the FIFOs.
The ftaddr_sa_fifo entity can either implement a FIFO based on flip flops or on RAM blocks. When

22 www.cobham.com/gaisler

RAM blocks are selected then those are instantitated from the ftaddr_sa_techspec_fifobuf entity, this
needs to be provided for the target technology.
When building the main top-level or one of the standard logic wrapper together with the RTL fifo
with flip flops, the IP core has no external dependencies, except for the standard IEEE VHDL librar-
ies. In other configurations it will depend on the core GRLIB libraries grlib.stdlib, grlib.amba and
techmap.gencomp libraries.
An additional wrapper also exists called ftaddr_sawrap, this takes the stand-alone version and gives it
the same interface as the GRLIB version. The purpose is if the exact same code of the stand-alone ver-
sion is desired inside a GRLIB design.

1.7.2 Clocking and reset

The controller takes two clocks as input, one AHB clock used to clock the front-end ports, and one
DFI clock used to clock the controller back-end. The inputs and output signals of the core all belong
to one of these two clock domains.
The core has two synchronous reset inputs, one for each clock domain. The two should both be
asserted for a number of cycles in both domains, long enough to reset each domain and then to allow
all synchronization registers to stabilize. After that the resets can be raised in any order.
A dynsync signal is included in the controller that allows skipping a synchronization stage if the clock
domains are synchronous to each other. Note that this should not change during operation. It is cur-
rently only supported in the ftaddr_sa_fifo stand-alone implementation, for other implementations it
is ignored and full synchronization is always used. Note also that using dynsync requires synchronous
constraining between the clock domains.

1.7.3 Buffer memories, stand-alone version

The internal buffers consists in both directions of a control (command or response) asynchronous
FIFO and a data FIFO. In the read direction there is also an additional FIFO for the read prefetch.
In the stand-alone version, the command, response and read-data FIFOs are based on flip flops, while
write and prefetch FIFOs are based on SRAM.
The command and read-data FIFOs are implemented using flip-flops with a minimum-latency scheme
so that the data is ready on the same cycle that the write counter has been transferred instead of requir-
ing an extra cycle for reading the buffer as is required for a standard SRAM based FIFO. An addi-
tional cycle can be removed from these FIFOs if the clock domains are synchronous, using the
dynsync feature.
The response FIFO is implemented with flip-flops but using a standard scheme with an extra cycle for
reading from the buffer. The write data and prefetch data FIFOs are implemented with SRAM using a
traditional asynchronous FIFO approach.
The FIFOs must be of the first-word-fall-through type, where data and valid come out on the same
cycle.

1.7.4 Guard gates, stand-alone version

Guard gates to prevent glitches propagating between the clock domains are implemented with the
ftaddr_sa_cdcguard, in turn depending on the ftaddr_sa_nand2 block, which is a two-input NAND
model. In order to avoid this from being optimized out, the command “set_boundary_optimization
[get_designs ftaddr_sa_nand2] false” can be used in Design Compiler.

1.7.5 EDAC pipelining

Extra EDAC pipeline stages are currently not supported, as the pipelining currerntly implemented sat-
isfies the performance requirements.

23 www.cobham.com/gaisler

1.7.6 Clock gating

The IP core is designed with a design style that allows for automatic clock gate insertion by the syn-
thesis tool.

1.7.7 Performance and area

Trial synthesis of the controller was done to C65SPACE using DC Topo with configuration 4 ports,
128 bits AHB, stand-alone version with all features included, black boxed SRAMs. This met timing at
400 MHz frequency on both AHB and DDR domains and produced a standard cell area (not including
the SRAM) of 0.46 mm^2, and at 550 MHz frequency with an area of 0.51 mm^2
The controller has also been built with all features including EDAC, for an Altera Stratix4 FPGA with
AHB clock 100 MHz and AFI/DDR clock 125 MHz.

1.7.8 Porting to other technology, stand-alone version

There are several possible strategies for porting the controller to a new technology.
The simplest strategy is to build the controller with only flip flops for memories using the dffonly
generic, it then becomes inherently portable to any technology by changing the target library of the
synthesis tool.
The recommended strategy for porting the controller using SRAM buffers, is to take the existing
c65space technology specific implementation (ftaddr_sa_techspec_c65space.vhd) and modifying the
RAM instantiations to equivalent RAMs in the target technology. The error correction implemented in
this file can tolerate at most one error per RAM addreess.

1.7.9 Porting to new technology, GRLIB version

The GRLIB version is ported to a new technology by implementing a technology mapping for the
desired technology and then changing the controllers memtech generic to use this techmap.

1.8 PHY specific implementation characteristics

1.8.1 Generic DFI implementation

The generic DFI implementation is intended to interface a DFI2.1.1 compliant DDR2/DDR3 PHY
with the following limitations:
• The PHY must use a 1:1 frequency ratio DFI interface
• The PHY does not use “MC evaluation” mode for training. Note that it is impossible to imple-

ment a generic MC evaluation calibration algorithm since the meaning of the delays are not
defined in DFI. For using MC evaluation mode, a PHY specific implementation is required.

• The DFI timing parameters are compatible. The timing parameters for the controller are listed in
table 9.

The trden, twrlat and twrdata timings that the PHY supports are supplied to the controller through
VHDL generics (genphy_trden, genphy_twrlat, and genphy_twrdata). The timings can be set either
absolut or relative to the CAS latency depending on what the PHY requires so that they will always be
correctly set when updating the CAS latency. The timings can also be overridden from software at run
time through the PHY timing registers.
The update interfaces (both MC initiated and PHY initiated) are supported by the controller. The MC
update request is asserted while waiting for periodic refresh command to finish.
Note that the DFI parity buses are not used, the regular data bus is used also for ECC/parity bits.
The controller offers some optional extra signals that may be used if the PHY supports it, or may be
ignored otherwise:

24 www.cobham.com/gaisler

• xdfi_term_en - Usable to enable local termination on the controller side during reads. Active
high, default not used (always 0). The timing and usage of this signal is controlled via the ODT
internal timing register.

• xdfi_rderr - Indicate that data on a specific byte lane was not received. Tie to all-0 if not used.
• xdfi_softrst - Active high “soft-reset” to reset the state machines of the PHY to idle state while

idle.
• xdfi_phyctrl - Generic control signals tied to PHY generic control signal register.
If desired and supported by the PHY, the control and address signal buses may be duplicated throught
the ctrldup and csdup generics

1.8.2 ISD65 PHY specific implementation

The ISD65 PHY specific implementation is tuned for the PHY for C65SPACE developed by ISD S.A.
This implementation adds calibration algorithms for gate training, write leveling, and read leveling.
Note that the PHY has separated ports for gate coarse delay and gate fine delay. The gate coarse delay
should be connected to the 6 most significant bits, and the gate fine delay to the 6 least significant bits
of dfi_rdlvl_gate_delay for each byte lane.
This implementation does not use generics for DFI timings, but has hard-coded default values to
match the PHY. They may still be overridden by software.
When using this implementation, the generics to the controller shall be set according to table 6 and
non-DFI signals shall be connected according to table 7.
Calibration for the ISD65 PHY is described in section 1.16.

Table 6. Required VHDL generic settings for ISD65 PHY implementation

Generic Setting Comment
phyimpl 1 ISD65 constant
ddrbits 96 96-bit wide interface only supported
numrwen 1
numrdlvlphy 1
numrdlvlmc 2
numwrlvlphy 1
numwrlvlmc 12
rdblvlbits 48 6 per data bit
rdglvlbits 12 6 bits coarse delay, 6 bits fine delay
wrlvlbits 6
phyctrlbits 11 May be set higher for system-specific extra bits

Table 7. Non-DFI port connections for ISD65 PHY implementation

FTADDR Port Connection on PHY Comment
xdfi_term_en i_odt_en(N) Drive all bits on PHY input bus with this value
xdfi_rderr o_rd_err
xdfi_softrst Not connected
xdfi_phyctrl(0) i_sync_clk_edge_mode(N) Drive all bits on PHY input bus with this value
xdfi_phyctrl(1) i_sync_clk_edge(N) Drive all bits on PHY input bus with this value
xdfi_phyctrl(6:2) i_sync_delta(5N+4 : 5N) Drive same value for each byte lane
xdfi_phyctrl(7) i_pdt_rtt_high(N) Drive all bits on PHY input bus with this value
xdfi_phyctrl(8) i_proga(N)
xdfi_phyctrl(9) i_progb(N)
xdfi_phyctrl(10) i_loopback_en
xdfi_bl_resetn Not connected Memory reboot not supported
xdfi_bl_cke Not connected Memory reboot not supported
xdfi_bl_pdn Not connected Memory reboot not supported
xdfi_clk_zero Not connected Memory reboot not supported

25 www.cobham.com/gaisler

1.8.3 Altera UniPhy implementation

The Altera implementation is intended for FPGA prototyping. It has been tested on Stratix4 with
DDR2 memory.
The PHY is built using the Quartus II “DDR2 SDRAM Controller with UniPHY” MegaWizard flow,
with the “Generate PHY only” option. It must be built with 1:1 frequency ratio (“Rate on Avalon-MM
interface” set to “Full”). The burst length must be set to 8.
Some specific precautions need to be taken with this PHY:
• The controller should not reprogram the mode registes, and in particular not change the CAS

latency. All period mode register reprogramming functions must be disabled, and the CAS
latency setting in the controller must be set to the same as set up when building the PHY.

• Accessing a non-implemented rank will result in the PHY locking up. This is avoided by setting
up the NCS field properly in the AHB address decode register and enabling out-of-range AHB
error.

The interface used is AFI which is very similar to DFI. Two dedicated ports are added to the controller
to support this PHY, afi_dqs_burst and afi_wlat.

26 www.cobham.com/gaisler

The connections are listed in table 8.

Table 8. Port connections for UNIPHY implementation

FTADDR port Connection on PHY Comment
dfi_cs_n afi_cs_n
dfi_bank afi_ba
dfi_address afi_addr Connect lowest bits if afi_addr width lower
dfi_ras_n afi_ras_n
dfi_cas_n afi_cas_n
dfi_we_n afi_we_n
dfi_cke afi_cke
dfi_odt afi_odt
dfi_reset_n Not connected
dfi_wrdata afi_wdata
dfi_wrdata_en(0) afi_wdata_valid Connect bit 0 of wrdata_en to all bits
dfi_wrdata_mask afi_dm
dfi_rddata_en afi_rdata_en,

afi_rdata_en_full
dfi_rddata afi_rdata
dfi_rddata_valid afi_rdata_valid
dfi_ctrlupd_ack Not connected Feed constant 0 into controller
dfi_phyupd_req Not connected Feed constant 0 into controller
dfi_phyupd_type Not connected Feed constant “00” into controller
dfi_dram_clk_disable dram_clk_disable
dfi_init_complete afi_cal_success
dfi_rdlvl_mode Not connected Feed constant 0 into controller
dfi_rdlvl_req Not connected Feed constant 0 into controller
dfi_rdlvl_gate_mode Not connected Feed constant 0 into controller
dfi_rdlvl_gate_req Not connected Feed constant 0 into controller
dfi_rdlvl_resp Not connected Feed constant 0 into controller
dfi_wrlvl_mode Not connected Feed constant 0 into controller
dfi_wrlvl_req Not connected Feed constant 0 into controller
dfi_wrlvl_resp Not connected Feed constant 0 into controller
xdfi_term_en Not connected
xdfi_rderr Not connected Feed constant 0 into controller
xdfi_softrst Not connected
xdfi_phyctrl Not connected
afi_dqs_burst afi_dqs_burst
afi_wlat afi_wlat

27 www.cobham.com/gaisler

1.9 DFI Spec Sheet

Below is a specification sheet of the controller in the same format as section 7.0 of the DFI specifica-
tion. (note that version 2.1.1 of the specification has an error where min and max have been swapped).

Table 9. DFI Settings specification for FTADDR controller

Terms Min Max Comment
DFI clock frequency N/A Synchronous logic, max frequency depends on imple-

mentation technology. 1:1 clock ratio.
DFI Address width 16 16
DFI Bank Width 3 3
DFI Control Width 1 1
DFI Chip Select Width 1 8 Selected via numcs generic
DFI Data Width 64 256 Selected via ddrbits generic (times 2).

Since maximum 2*96 bits are used, additional data
bits are padded with zero/ignored.

DFI Data Enable Width 1 - Set via numrwen generic, all bits driven to same
value.

DFI Read Data Valid Width 1 - Set via numrwen generic, only bit 0 is used.
DFI Read Leveling Delay Width 1 - Set via rdblvlbits generic.
DFI Read Leveling Gate Delay Width 1 - Set via rdglvlbits generic
DFI Read Leveling MC IF Width 1 - Set via numrdlvlmc generic
DFI Read Leveling PHY IF Width 1 - Set via numrdlvlphy generic
DFI Read Leveling Response Width 32 96 Selected via ddrbits generic (always same width as

data bus)
DFI Write Leveling Delay Width 1 - Set via wrlvlbits generic
DFI Write Leveling MC IF Width 1 - Set via numwrlvlmc generic
DFI Write LEveling PHY IF Width 1 - Set via numwrlvlphy generic
DFI Write Leveling Response Width 32 96 Selected via ddrbits generic (always same width as

data bus)

Table 10. Timing parameter settings for FTADDR controller

Parameter Min Max Comment
tctrl_delay 0 5

tphy_wrdata 0 11-tphy_wrlat Set via genphy_twrdata generic

tphy_wrdelay N/A Frequency ratio systems only

tphy_wrlat 0 11 Set via genphy_twrlat generic

tphy_rdlat 1 - Controller waits indefinitely for read data. System
level limitations for refresh etc.

trddata_en 0 11 Set via genphy_trden generic

tctrlupd_interval 500 - Depends on refresh rate settings, one update offer
per refresh.

tctrlupd_min 3 514 Depends on TRFC setting of controller

tctrlupd_max 3 514 Depends on TRFC setting of controller

tphyupd_type0 0 -

tphyupd_type1 0 -

tphyupd_type2 0 -

28 www.cobham.com/gaisler

tphyupd_type3 0 -

tphyupd_resp 100 - System dependent. Controller will in worst case
wait for any already issued read or write commands
followed by a precharge all to complete.

tdram_clk_disable 0 10

tdram_clk_enable 0 10

tinit_complete N/A dfi_init_start not implemented

tinit_start N/A dfi_init_start not implemented

tphy_paritylat N/A dfi_init_start not implemented

trdlvl_dll N/A Only for MC evaluation mode

trdlvl_en 1 16

trdlvl_load N/A Only for MC evaluation mode

trdlvl_max - - Controller waits indefinitely for rdlvl_resp

trdlvl_resp 100 - System dependent. Controller will in worst case
wait for any already issued read or write commands
followed by a precharge all to complete.

trdlvl_resplat 1 15

trdlvl_rr 16 16

twrlvl_dll N/A Only for MC evaluation mode

twrlvl_en 1 16

twrlvl_load N/A Only for MC evaluation mode

twrlvl_max - - Controller waits indefinitely for wrlvl_resp

twrlvl_resp 100 - System dependent. Controller will in worst case
wait for any already issued read or write commands
followed by a precharge all to complete.

twrlvl_resplat 1 14

twrlvl_ww 15 15

tlp_resp N/A Low-power interface not implemented

tlp_wakeup N/A Low-power interface not implemented

Table 10. Timing parameter settings for FTADDR controller

Parameter Min Max Comment

29 www.cobham.com/gaisler

1.10 Registers

The controller provides a 1024 byte memory-mapped register area. This is split into two halves, the
first for configuration registers residing in the back-end, and the second for configuration registers
residing in the front-end. For forward compatibility, reserved fields should be written either with 0 or
with the last read-out value, and reserved registers should not be accessed at all.

Table 11. Configuration registers for FTADDR controller

Register
address offset Name R/W

Reset value
(dynrst=0) Notes

0x000 Feature set register R * 1
0x004 Back-end status register R 0x00000000
0x008 Memory configuration register 1 R/W 0x808FFFFF
0x00C Memory configuration register 2 R/W 0xFFFFFFC0
0x010 Memory configuration register 3 R/W 0x00076475
0x014 Memory configuration register 4 R/W 0x00000009
0x018 Service configuration register 1 R/W 0x0FF01512
0x01C Service configuration register 2 R/W 0x1900FFFF
0x020 PHY timing register 1 R/W * 1
0x024 PHY timing register 2 R/W * 1
0x028 Diagnostic control register 1 R/W * 2
0x02C Diagnostic control register 2 R/W * 2
0x030 Diagnostic status register R * 2
0x034 Diagnostic checkbit register R/W * 2
0x038 Diagnostic data register 1 R/W * 2
0x03C Diagnostic data register 2 R/W * 2
0x040 ODT configuration register, rank #0 R/W 0x00000000
0x044 ODT configuration register, rank #1 R/W 0x00000000 3
0x048 ODT configuration register, rank #2 R/W 0x00000000 3
0x04C ODT configuration register, rank #3 R/W 0x00000000 3
0x050 ODT configuration register, rank #4 R/W 0x00000000 3
0x054 ODT configuration register, rank #5 R/W 0x00000000 3
0x058 ODT configuration register, rank #6 R/W 0x00000000 3
0x05C ODT configuration register, rank #7 R/W 0x00000000 3
0x060 ODT external timing register R/W 0x00008006
0x064 ODT internal timing register R/W 0x00000000
0x068 Command register W 0x00000000
0x06C Sleep mode configuration register R/W 0x00000000
0x070 Back-end EDAC configuration register R/W 0x80000000
0x074 Service time counter register R/W 0x0FF340FF 4
0x078 PHY indirect address register R/W 0x00000000
0x07C PHY indirect data register R/W * 1
0x080 PHY generic control register R/W * 1
0x084 Training time counter register R/W 0xFFFF0200 4
0x088 Back-end FIFO error counter register R/W * 2
0x08C-0x1FC RESERVED
0x200 AHB address decode register R/W 0x0000E6AA
0x204 AHB access configuration register R/W 0x4200000F

30 www.cobham.com/gaisler

0x208 Prefetch configuration register R/W 0x03FFFFFF
0x20C Scrubber configuration register 1 R/W 0x00000000
0x210 Scrubber configuration register 2 R/W 0x0000FFFF
0x214 IRQ pending register R/W 0x00000000
0x218 IRQ enable register R/W 0x00000000
0x21C Scrubber UE error register R/W * 2
0x220 Scrubber CE byte lane counter register 1 R 0x00000000
0x224 Scrubber CE byte lane counter register 2 R 0x00000000
0x228 Scrubber CE byte lane counter register 3 R 0x00000000
0x22C Scrubber CE byte lane counter register 4 R 0x00000000
0x230 Scrubber CE address counter register 1 R * 2
0x234 Scrubber CE address counter register 2 R * 2
0x238 Scrubber CE address counter register 3 R * 2
0x23C Scrubber CE address counter register 4 R * 2
0x240 Access CE location register, port #0 R * 2
0x244 Access UE location register, port #0 R * 2
0x248 Access CE location register, port #1 R * 2, 3
0x24C Access UE location register, port #1 R * 2, 3
0x250 Access CE location register, port #2 R * 2, 3
0x254 Access UE location register,port #2 R * 2, 3
0x258 Access CE location register, port #3 R * 2, 3
0x25C Access UE location register, port #3 R * 2, 3
0x260 Prefetch status register, port #0 R * 2
0x264 Prefetch status register, port #1 R * 2, 3
0x268 Prefetch status register, port #2 R * 2, 3
0x26C Prefetch status register, port #3 R * 2, 3
0x270 Prefetch bank/CS register R * 2
0x274 Scrubber start address register R/W 0x00000000
0x278 Scrubber end address register R/W 0x73FFFFFF
0x27C Front-end FIFO error counter register R/W * 2
0x280 Init pattern register 1 R/W 0x00000000
0x284 Init pattern register 2 R/W 0x00000000
0x288 Init pattern register 3 R/W 0x00000000
0x28C Init pattern register 4 R/W 0x00000000
0x290 Scrubber position register, port #0 R 0x00000000
0x294 Scrubber position register, port #1 R 0x00000000 3
0x298 Scrubber position register, port #2 R 0x00000000 3
0x29C Scrubber position register, port #3 R 0x00000000 3
0x2A0-0x3FC RESERVED
Note 1: Reset value depends on IP configuration options
Note 2: Some fields in register are not reset
Note 3: Whether register is implemented depends on IP configuration options (port/CS count)
Note 4: Register starts counting directly after releasing reset, read-out value may be different

Table 11. Configuration registers for FTADDR controller

Register
address offset Name R/W

Reset value
(dynrst=0) Notes

31 www.cobham.com/gaisler

In addition to the AHB registers, an additional register space is accessible by the PHY indirect address
and data registers. This provides access to PHY-specific registers and their address mappings are tab-
ulated in table 12 below.

Table 12. PHY-specific configuration registers for FTADDR controller

Indirect
address Name R/W Reset value Notes
Generic PHY implementation (phyimpl=0)
0x00-0xFF RESERVED
ISD65 PHY implementation (phyimpl=1)
0x00 Manual calibration register 1 R/W 0x00000000
0x01 Manual calibration register 2 W 0x00000000
0x02-0x04 Gate coarse delay register 1-3 R/W * 1
0x05-0x07 Gate fine delay register 1-3 R/W * 1
0x08-0x0A Write leveling delay register 1-3 R/W * 1
0x0B-0x22 Read delay register 1-24 R/W * 1
0x23-0x25 Write leveling response register 1-3 R * 1
0x26-0x28 Read leveling response register 1-3 R * 1
0x29 MPR bit position register 1 RW 0x00000000
0x2A MPR bit position register 2 RW 0x00000000
0x2B Training configuration register RW 0x0000003F
0x2C-0xFF RESERVED
Altera UniPHY implementation (phyimpl=2)
0x00-0xFF RESERVED
Note 1: Some fields in register are not reset

1.10.1

Table 13. 0x000 - FTADDR feature set register
31 24 23 16

PHYIMPL RESERVED

* 0

r r

15 14 13 12 10 9 8 7 6 5 4 3 2 1 0

RES ECCS PARS NCSMAX NPORT DDRWIDTH

0 1 1 * * *

r r r r r r

31 : 24 PHY implementation ID (PHYIMPL). See section 1.3.11 for possible values.
23 : 15 Reserved
14 ECC support, set to 1 if external memory EDAC is supported
13 Parity support, set to 1 if parity checking mode is supported
12 : 10 Number of chip selects (external banks) supported, minus one.

0=1 bank, 1= 2 banks, ..., 7 = 8 banks supported
9 : 8 Number of AHB ports on controller, log2 format. 0=1 port, 1=2 ports 2=4 ports, 3=reserved
7 : 0 Width of DDR data bus, in bits.

Feature set register

32 www.cobham.com/gaisler

1.10.2

Table 14. 0x004 - FTADDR backend status register
31 26 25 16

INTERROR RESERVED

000000 0

r r

15 5 4 0

RESERVED BESTATE

0 *

r r

31 : 26 Internal error. Diagnostic bits set only on data path inconsistency conditions that should ‘never hap-
pen’. See section 1.3.13 for further details.

25 : 5 Reserved
4 : 0 Current back-end state

0 = Down, waiting to be enabled
1 = Enabled, waiting for minimum time before beginning init
2 = Performing init sequence
3 = Initial gate training
4 = Initial data eye training
5 = Initial write leveling
6 = Normal state
7 = In service interval
8 = Returning from service interval, reopening rows
9 = Manual mode
10 = Closing rows for entering service interval
11 = Performing auto-refresh
12 = Rewriting mode registers
13 = Incremental gate training
14 = Incremental data eye training
15 = Incremental write leveling
16 = Performing diagnostic access
17 = Performing automatic retry
18 = Memories in self-refresh mode
19 = Performing memory byte lane reboot
20-31 = Reserved (currently unused)

Backend status register

33 www.cobham.com/gaisler

1.10.3

Table 15. 0x008 - FTADDR memory configuration register 1
31 30 29 28 27 26 25 22 21 20 19 16

DDRT HWID ENX4 PWRU SKIP-
CALIB

SKIP-
INIT

CASLAT WLAT DRAS (6:3)

1 0 0 0 0 0 10 00 1111

rw rw rw rw rw rw rw rw rw

15 13 12 6 5 3 2 0

DRAS (2:0) DRP DFAW DRRD

111 1111111 111 111

rw rw rw rw

31 DDR memory type (0=DDR2, 1=DDR3)
30 Half width mode selection (0=full width, 1=half width)
29 Half byte mode selection (0=full byte 1= half byte)
28 Power up (PWRU), set to 1 to start init sequence.
27 Skip calibration, set to 1 before (or at the same time as) setting PWRU to skip calibration
26 Skip initalization, set to 1 before (or at the same time as) setting PWRU to skip initialization
25 : 22 CAS latency (CASLAT), programmed into the mode registers of the memory devices

For DDR2: 0-1=Reserved, 2=CL2, 3=CL3, 4=CL4, 5=CL5, 6=CL6, 7-15=Reserved
For DDR3: 0=Reserved, 1=CL5, 2=CL6, 3=CL7, 4=CL8, 5=CL9, ..., 10=CL14, 11-15=Reserved

21 : 20 CAS write latency for DDR3 (WLAT), setting has no effect when DDR2 is used
0=WL5, 1=WL6, 2=WL7, 3=WL8, 4=WL9, 5=WL10, 6=WL11, 7=WL12

19 : 13 Delay setting for tRAS (DRAS)
12 : 6 Delay setting for tRP (DRP)
5 : 3 Delay setting for tFAW (DFAW)
2 : 0 Delay setting for tRRD (DRRD)

Memory configuration register 1

1.10.4

Table 16. 0x00C - FTADDR memory configuration register 2
31 30 29 25 24 20 19 16

RESERVED DWTR DWR DRTP

0 11111 11111 1111

r rw rw rw

15 12 11 3 2 1 0

DRCD DRFC DLLDIS RDIMM T2

1111 111111111 0 0 0

rw rw rw rw rw

31 : 30 Reserved
29 : 25 Delay setting for tWTR (DWTR)
24 : 20 Delay setting for tWR (DWR)
19 : 16 Delay setting for tRTP (DRTP)
15 : 12 Delay setting for tRCD (DRCD)
11 : 3 Delay setting for tRFC (DRFC)
2 DLL disable setting for external memories (1=DLL disabled, 0=DLL enabled)
1 Registered DIMM mode (0=regular memory, 1=registered DIMM)
0 2T signaling mode enable (0=1T signaling, 1=2T signaling)

Memory configuration register 2

34 www.cobham.com/gaisler

1.10.5

Table 17. 0x010 - FTADDR memory configuration register 3
31 30 20 19 16

M3OVR RESERVED DRTW

0 0 *

rw r rw

15 12 11 8 7 4 3 0

DRTRXCS DWTWXCS DRTWXCS DWTRXCS

0110 0100 * *

rw rw rw rw

31 Memory configuration register 3 override (M3OVR).
This must be set to 1 to configure the other fields in this register, otherwise they are automatically set
to default values as indicated below.

30 : 20 Reserved
19 : 16 Delay between read-to-write commands to same CS, by default set to CL-WL+6
15 : 12 Delay between read-to-read commands to different CS, by default set to 6 cycles
11 : 8 Delay between write-to-write commands to different CS, by default set to 4 cycles
7 : 4 Delay between read-to-write commands to different CS, by default set to CL-WL+6
3 : 0 Delay between write-to-read commands to different CS, by default set to WL-CL+6

Memory configuration register 3

1.10.6

Table 18. 0x014 - FTADDR memory configuration register 4
31 20 19 16

DATA BYTE DISABLE RESERVED

000000000000 0

rw r

15 4 3 0

RESERVED DMOD

0 1001

r rw

31 : 20 Data byte disable mask. Set bit to 1 to disable corresponding byte lane (if supported by PHY).
19 : 4 Reserved
3 : 0 Delay setting for tMOD (DMOD)

Memory configuration register 4

35 www.cobham.com/gaisler

1.10.7

Table 19. 0x018 - FTADDR service configuration register 1
31 30 29 28 27 20 19 16

SHOLD RESERVED FREOP MRREPIVAL REFIVAL (7:4)

0 0 0 11111111 0000

rw r rw rw rw

15 12 11 0

REFIVAL (3:0) SRVBASEPER

0001 010100010010

rw rw

31 Hold-off service intervals, set to 1 to delay triggering any refresh or mode reprog cycles
30 : 29 Reserved
28 Force always reopening rows after service interval (see section 1.3.3)
27 : 20 Mode register reprogramming interval, in multiples of base period, minus one

Setting this register to all-ones disables mode register reprogramming
19 : 12 Refresh interval, in multiples of base period, minus one

Setting this register to all-ones disables periodic refresh cycles
11 : 0 Service interval base period in DFI clock cycles, minus one

Service configuration register 1

1.10.8

Table 20. 0x01C - FTADDR service configuration register 2
31 24 23 16

U100MULT RESERVED

00011001 0

rw r

15 8 7 0

FTRAINIVAL ITRAINIVAL

11111111 11111111

rw rw

31 : 24 Multiple of service interval base periods needed to get to 100 us, minus one.
This counter is used for the training intervals in this register. The value for this register and the base
period is also used for timing of init sequence delays.

23 : 16 Reserved
15 : 8 Full re-training interval, in multiples of 10 ms units (100*U100MULT*SRVBASEPER), minus one

Setting this register to all-ones disables full re-training
7 : 0 Incremental re-training interval, in multiples of 10 ms units (100*U100MULT*SRVBASEPER),

minus one.
Setting this register to all-ones disables incremental training

Service configuration register 2

36 www.cobham.com/gaisler

1.10.9

Table 21. 0x020 - FTADDR PHY timing register 1
31 30 16

PTOR RESERVED

0 0

rr r

15 12 11 0

RESERVED RDEN_MASK

0 *

r rw

31 PHY timing register override (PTOR)
This is set to 1 to allow manual configuration of the fields in PHY timing register 1 and 2, otherwise
they are set up automatically.

30 : 12 Reserved
11 : 0 Read-enable timing mask. This controls when the read-enable signal to the PHY (dfi_rddata_enable)

is sent out relative to the read command. If bit 0 is set, the read-enable signal is asserted the same
time as the command, if bit 1 is set then the read-enable is asserted one cycle after, and so on.
Only one bit in the mask should be set for DFI compliant operation, however it may in some cases be
useful for debugging to set multiple bits to stretch the dfi_rddata_enable longer than the actual burst.
By default (if PTOR is not set) this will be set automatically to an expected good value based on
CAS latency values and which PHY implementation is used.

PHY timing register 1

1.10.10

Table 22. 0x024 - FTADDR PHY timing register 2
31 21 20 16

RESERVED WRDATA_MASK (8:4)

0

r

15 12 11 9 8 0

WRDATA_MASK (3:0) RESERVED WREN_MASK

* 0 *

rw r rw

31 : 21 Reserved
20 : 12 Write data timing mask. Controls the timing of delivery of write data to the PHY relative to the write

command, analogous to the RDEN_MASK.
By default (if PTOR in PHY timing register 1 is not set), this is set automatically to the expected
good value based on CAS/write latency settings and PHY implementation.

11 : 9 Reserved
8 : 0 Write enable mask. Controls the timing of the dfi_wrdata_en signal to the PHY relative to the write

command, analogous to RDEN_MASK.
By default (if PTOR in PHY timing register 1 is not set) this is set automatically to the expected
good value based on CAS/write latency settings and PHY implementation.

PHY timing register 2

37 www.cobham.com/gaisler

1.10.11

Table 23. 0x028 - FTADDR diagnostic access control register 1
31 24 23 20 19 18 16

RESERVED DIAGCS RES DIAGBANK

0 (nr) 0 (nr)

r rw r rw

15 0

DIAGROW

(nr)

rw

31 : 24 Reserved
23 : 20 Chip select number for next diagnostic access (DIAGCS)

Actual width of this field depends on number of CS lines implemented.
19 Reserved
18 : 16 Bank number used for next diagnostic access (DIAGBANK)
15 : 0 Row number used for next diagnostic access (DIAGROW)

This register is also used to control the address lines in manual mode.

Diagnostic access control register 1

1.10.12

Table 24. 0x02C - FTADDR diagnostic access control register 2
31 30 29 28 27 26 25 24 23 16

DODG DGWR MANE MRASN MCASN MWEN MRDC MWRC MANUAL_CSN

0 (nr) 0 (nr) (nr) (nr) 0 0 11111111

rw rw rw rw rw rw w w rw

15 14 12 11 0

MGTRD RESERVED DIAGCOL

0 0 (nr)

w r rw

31 Do diagnostic access (DODG)
Write 1 to this field to start a single diagnostic access corresponding to DIAGCS,DIAG-
BANK,DIAGCOL,DGWR fields. Self clearing. Poll DIAGDONE to detect completion.

30 Write/Read control for diagnostic access. Set to 1 to make next diagnostic access a write, set to 0 to
make it a read.

29 Manual mode request. Set this field to 1 to request the controller to go into manual mode and clear
when done . This is a request signal, poll the Backend status register to see when controller is ready.

28 Manual mode RASN signal control
27 Manual mode CASN signal control
26 Manual mode WEN signal control
25 Manual mode read pipeline activation. Write 1 to this the same time as asserting the manual_csn

with a read command to fetch the read data into the diagnostic data register.
24 Manual mode write pipeline activation. Write 1 to this field the same time as asserting the manu-

al_csn with a write command to do a write burst with the data from the diagnostic data register.
23 : 16 Manual chip select assertion. If one or more bits in this field are written then the corresponding chip

select lines will be asserted for one cycle. This field is self-clearing and returns immediately to all-
ones state.

15 Manual gate training read sequence. This will lower one of the MANUAL_CSN bits (which one is
selected by the DIAGCS field) two times with 4 cycles apart. The first time the MRDC bit is also
written to one.

14 : 12 Reserved
11 : 0 Column number for diagnostic access.

Diagnostic access control register 2

38 www.cobham.com/gaisler

1.10.13

Table 25. 0x030 - FTADDR diagnostic access status register
31 30 25 24 23 16

DDONE RESERVED DGUE DIAGCEMASK (23:16)

0 0 (nr) (nr)

r r r r

15 0

DIAGCEMASK (15:0)

(nr)

r

31 Diagnostic access done (DDONE)
Poll this bit after writing DODG, when it is set to 1 the access has completed, diagnostic data regis-
ters have been updated and DGUE/DGCEMASK fields are valid.

30 : 25 Reserved
24 Diagnostic access uncorrectable EDAC error detected (DGUE)
23 : 0 Diagnostic access correctable EDAC error mask (DIAGCEMASK)

One bit per nibble read asserted if the EDAC corrected an error on that nibble.

Diagnostic access status register

1.10.14

Table 26. 0x034 - FTADDR diagnostic checkbit register
31 16

DIAGCB (31:16)

(nr)

rw

15 0

DIAGCB (15:0)

(nr)

rw

31 : 0 Diagnostic checkbit register. Holds the 32-bit checkbit part of the codeword before or after diagnos-
tic access

Diagnostic checkbit register

1.10.15

Table 27. 0x038 - FTADDR diagnostic data register 1
31 16

DIAGDATA1 (31:16)

(nr)

rw

15 0

DIAGDATA1 (15:0)

(nr)

rw

31 : 0 Diagnostic data register 1. Holds the high half of the 64-bit data part of the codeword before or after
diagnostic access

Diagnostic data register 1

39 www.cobham.com/gaisler

1.10.16

Table 28. 0x03C - FTADDR diagnostic data register 2
31 16

DIAGDATA2 (31:16)

(nr)

rw

15 0

DIAGDATA2 (15:0)

(nr)

rw

31 : 0 Diagnostic data register 2. Holds the low half of the 64-bit data part of the codeword before or after
diagnostic access

Diagnostic data register 2

1.10.17 ODT configuration register for CS #N

Table 29. 0x040-0x05C, FTADDR ODT configuration register for CS #N
31 27 26 25 24 23 21 20 19 18 17 16

RESERVED ODTWL RTTWL RTT RTTWR DIC RLODT

0 1 01 000 00 00 0

r rw rw rw rw rw rw

15 8 7 0

RDODT WRODT

00000000 00000000

rw rw

31 : 27 Reserved
26 Enable ODT during write leveling (DDR3 only)
25 : 24 RTT setting during write leveling (DDR3 only)
23 : 21 RTT setting for programming into mode register
20 : 19 RTT_WR setting for programming into mode register (DDR3 only)
18 : 17 DIC setting for programming into mode register
16 Enable local on-chip termination when reading from this chip select.
15 : 8 Mask of which ODT signals to enable when reading from this chip select
7 : 0 Mask of which ODT signals to enable when writing to this chip select

Note: 1-8 separate registers with the same format is implemented, one for each chip select

40 www.cobham.com/gaisler

1.10.18

Table 30. 0x060 - FTADDR ODT external timing register
31 24 23

ODTDEFAULT ODTRDMASK (12:5)

00000000 00000000

rw rw

13 12 11 1 0

ODTRDMASK (4:1) RES ODTWRMASK(12:1) RES

1000 0 00000000110 0

rw r rw r

31 : 24 ODT default value
Mask specifying which ODT signals are enabled when neither read nor write ODT configuration has
been activated.

23 : 13 ODT read timing mask.
Bit mask specifying the timing relative to a read command when the read ODT configuration for that
chip select (based on the per-CS ODT registers) is activated. This mask is set automatically based on
current CAS latency settings and can only be manually set if the PTOR field in PHY timing register
1 is set.

12 Reserved
Controller does not support asserting ODT simultaneously with the read command, therefore bit 0 of
the timing mask is not implemented.

11 : 1 ODT write timing mask
Bit mask specifying the timing relative to a write command, when the write ODT configuration for
that chip select (based on the per-CS ODT registers) is activated. This mask is set automatically
based on current CAS latency settings and can only be manually set if the PTOR field in PHY timing
register 1 is set.

0 Reserved
Controller does not support asserting ODT simultaneously with the write command, therefore bit 0
of the ODT write timing mask is not implemented.

ODT external timing register

1.10.19

Table 31. 0x064 - FTADDR ODT internal timing register
31 24 23 16

RESERVED LODTRMASK (11:4)

* 00000000

r rw

15 12 11 0

LODTRMASK (3:0) RESERVED

0000 0

rw r

31 : 24 Reserved
23 : 12 Local ODT read timing mask.

Bit mask specifying the timing relative to a read command when the internal on-chip termination is
activated. This mask is set analogous to the RDEN_MASK.

11 : 0 Reserved

ODT internal timing register

41 www.cobham.com/gaisler

1.10.20

Table 32. 0x068 - FTADDR command register
31 20 19 18 17 16

SET BYTE LANE DISABLE RES MREB DOZQL DOZQS

0 0 0 0 0

ws r ws ws ws

15 14 11 10 9 8 7 6 5 4 3 2 1 0

SPRST TRLANE BLTR BLTG BLTW INCTR INCTG INCTW FTRR FTRG FTRW DOMR DOREF

0 r0 0 0 0 0 0 0 0 0 0 0 0

ws rw ws ws ws ws ws ws ws ws ws ws ws

31 : 20 Disable byte lane. Writing 1 to one of the bits in this field sets the corresponding bit in the byte lane
disable register in memory configuration register 4 (see 1.10.6). Reading returns a copy of the byte
lane disable register.

19 Reserved
18 Write 1 to trigger memory reboot of single byte lane selected by bits 14:11, if supported by control-

ler. The read value of this field will be 1 after writing it until the action has been performed.
17 Write 1 to trigger a single DDR3 ZQ Calibration long command. The read value of this field will be

1 after writing it until the action has been performed.
16 Write 1 to trigger a single DDR3 ZQ Calibration short command. The read value of this field will be

1 after writing it until the action has been performed.
15 Write 1 to this bit to trigger a soft reset of the PHY (if supported). The read value of this field will be

1 after writing it until the action has been performed.
14 : 11 Selects which byte lane to target for byte lane re-training or memory reboot:

0=bits 7:0, 1=bits 15:8, ..., 11 = bits 95:88, 12-15 = reserved
This field is only written when one or more of the bits 10:8 or 18 is also written with 1. The field
needs to have its value kept until the re-training and re-boot actions have completed.

10 Write 1 to trigger read data eye training on single byte lane selected by bits 14:11. The read value of
this field will be 1 after writing it until the action has been performed.

9 Write 1 to trigger gate training on single byte lane selected by bits 14:11. The read value of this field
will be 1 after writing it until the action has been performed.

8 Write 1 to trigger write leveling on single byte lane selected by bits 14:11. The read value of this
field will be 1 after writing it until the action has been performed.

7 Write 1 to trigger full read data eye training. The read value of this field will be 1 after writing it until
the action has been performed.

6 Write 1 to trigger full gate training. The read value of this field will be 1 after writing it until the
action has been performed.

5 Write 1 to trigger full write leveling. The read value of this field will be 1 after writing it until the
action has been performed.

4 Write 1 to trigger incremental read data eye training. The read value of this field will be 1 after writ-
ing it until the action has been performed.

3 Write 1 to trigger incremental gate training. The read value of this field will be 1 after writing it until
the action has been performed.

2 Write 1 to trigger incremental write leveling. The read value of this field will be 1 after writing it
until the action has been performed.

1 Write 1 to trigger a mode register reprogramming. The read value of this field will be 1 after writing
it until the action has been performed.

0 Write 1 to trigger an auto-refresh. The read value of this field will be 1 after writing it until the action
has been performed.

Command register

42 www.cobham.com/gaisler

1.10.21

Table 33. 0x06C - FTADDR sleep mode configuration register
31 16

RESERVED

0

r

15 4 3 1 0

RESERVED SREFTHRES ASRFE

0 000 0

r rw rw

31 : 4 Reserved
3 : 1 Self refresh threshold (SREFTHRES). Number of idle refresh periods needed in order to trigger

going to self-refresh mode, minus one. Only used if SLPEN is set.
0 Automatic self-refresh enable. If set to 1 the controller will automatically put memories in self-

refresh mode when idle for a longer time.

Sleep mode configuration register

1.10.22

Table 34. 0x070 - FTADDR backend EDAC and FIFO error counter register
31 30 29 28 27 26 16

ECCMODE ERET RDEEN DRMW RESERVED

10 0 0 0 0

rw rw rw rw r

15 4 3 0

RESERVED RETTEST

0 0000

r rw

31 : 30 Error Correction Code Mode
10 = full EDAC, 01 = parity, 00 = none

29 Automatic retry on EDAC internal errors
28 Enable read-error signal from PHY (if supported by PHY) to trigger byte lane failure messages to

the front-end.
27 Disable read-modify-write and perform partially masked writes instead. Should only be used when

EDAC is disabled (ECCMODE=00)
26 : 4 Reserved
3 : 0 Retry test. Writing a 1 to bit 3 and a count of 1-7 to bits 2:0 will trigger an EDAC internal error flag

once in order to test the automatic retry feature enabled by bit 29. The count determines how many
read data words from the PHY are received before the test is triggered. Writing 0 to bit 3 or writing 0
to bits 2:0 will have no effect and the field gets cleared.

EDAC configuration register

43 www.cobham.com/gaisler

1.10.23 Service time counter register

This register provides access to the internal running counters of the back-end that trigger the periodic
service functions. Writing to this register is mainly intended for testability purposes (for example to
produce a specific timing corner case for testing) and is not expected to be used in a typical applica-
tion.

Table 35. 0x074 - FTADDR service time counter register
31 29 28 27 20 19 16

RESERVED SITICK MRREPCTR REFCTR(7:4)

0 0 00000000 0000

r rw rw rw

15 12 11 0

REFCTR(3:0) SICTR

0000 000000000000

rw rw

31 : 29 Reserved
28 Service interval tick, set to 1 when service interval counter reached zero and was reset to the pro-

grammed interval.
27 : 20 Mode register reprogramming counter. Decreased when SITICK is set.
19 : 12 Refresh counter. Decreased when SITICK is set.
11 : 0 Service interval counter. Decreased each cycle.

1.10.24

Table 36. 0x078 - FTADDR PHY indirect address register
31 20 19 16

PHY READ ERROR INDICATOR RESERVED

000000000000 0

r r

15 8 7 0

RESERVED PHY REGISTER ADDRESS

0 00000000

r rw

31 : 20 Phy read error status indicator, read only. This indicates for which byte lanes the PHY has signaled a
read error. The bits are cleared on reset or when the corresponding byte lane is disabled via the byte
lane disable mask.

19 : 8 Reserved
7 : 0 PHY indirect register address. This field controls which PHY-internal register is accessed via the

PHY indirect data register

PHY indirect address register

44 www.cobham.com/gaisler

1.10.25

Table 37. 0x07C - FTADDR PHY indirect data register
31 16

PHY REGISTER DATA(31:16)

*

rw

15 0

PHY REIGSTER DATA(15:0)

*

rw

31 : 0 PHY register data, read/write. Contents of the register depends on which PHY is implemented and
which register has been selected in the PHY indirect address register.

PHY indirect data register

1.10.26

Table 38. 0x080 - FTADDR PHY generic control register
31 16

PHY GENERIC CONTROL(31:16)

*

rw

15 0

PHY GENERIC CONTROL(15:0)

*

rw

31 : 0 Generic control bus intended to control PHY or system-specific pseudo-static signals.
Number of bits implemented in the controller depends on the phyctrlbits generic.

PHY generic control register

1.10.27 Training time counter register

This register provides access to the internal running counters of the back-end that trigger the periodic
training functions, and is also used for power-up and initialization sequence delays. Writing to this
register is mainly intended for testability purposes (for example to produce a specific timing corner
case for testing) and is not expected to be used in a typical application.

Table 39. 0x084 - FTADDR training time counter register
31 24 23 16

FTRAINCTR ITRAINCTR

00000000 00000000

rw rw

15 14 8 7 0

TICK10 M10CTR U100CTR

0 0000000 00000000

rw rw rw

31 : 24 Full incremental training counter value, decreased each 10 millisecond tick.
23 : 16 Periodic incremental training counter value. decreased each 10 millisecond tick.
15 10 millisecond tick, set for one cycle when 10 millisecond counter wraps.
14 : 8 10 millisecond counter, decreased when 100 microsecond counter wraps.
7 : 0 100 microsecond counter, decreased when SITICK is set.

45 www.cobham.com/gaisler

1.10.28 Back-end FIFO error counter register

Table 40. 0x088 - FTADDR back-end FIFO error counter register
31 24 23 22 21 20 19 18 17 16

RESERVED CM3UE CM3CE WD3UE WD3CE CM2UE CM2CE
(1)

0 (nr) (nr) (nr) (nr) (nr) (nr)

r wc wc wc wc wc wc

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CM2CE
(0)

WD2UE WD2CE CM1UE CM1CE WD1UE WD1CE CM0UE CM0CE WD0UE WD0CE

(nr) (nr) (nr) (nr) (nr) (nr) (nr) (nr) (nr) (nr) (nr)

wc wc wc wc wc wc wc wc wc wc wc

31 : 24 Reserved
23 Uncorrectable error occurred on command FIFO for port #3
22 : 21 Correctable error saturating counter for command FIFO for port #3
20 Uncorrectable error occurred on write-data FIFO for port #3
19 :18 Correctable error saturating counter for write-data FIFO for port #3
17 Uncorrectable error occurred on command FIFO for port #2
16 : 15 Correctable error saturating counter for command FIFO for port #2
14 Uncorrectable error occurred on write-data FIFO for port #2
13 : 12 Correctable error saturating counter for write-data FIFO for port #2
11 Uncorrectable error occurred on command FIFO for port #1
10 : 9 Correctable error saturating counter for command FIFO for port #1
8 Uncorrectable error occurred on write-data FIFO for port #1
7 : 6 Correctable error saturating counter for write-data FIFO for port #1
5 Uncorrectable error occurred on command FIFO for port #0
4 : 3 Correctable error saturating counter for command FIFO for port #0
2 Uncorrectable error occurred on write-data FIFO for port #0.
1 : 0 Correctable error saturating counter for write-data FIFO for port #0.

Note that error counters are only implemented if the port is implemented and the corresponding FIFO implements
ECC. Counters are not reset and should be written with ones to be cleared.

46 www.cobham.com/gaisler

1.10.29

Table 41. 0x200 - FTADDR AHB address decode register
31 30 16

OORER RESERVED

0 0

rw r

15 13 12 9 8 5 4 2 1 0

NCS CSBASE BANKBASE ROWBASE COLBASE

111 0011 0101 010 10

rw rw rw rw rw

31 Out-of-range AHB error.
Set to 1 to trigger an AHB error response if an address above the amount of installed memory is
made (determined based on CSBASE and NCS).

30 : 16 Reserved
15 : 13 Number of chip selects (ranks / external banks) installed, minus one. Used for out-of-range detection

and for the scrubber.
12 : 9 AHB address bits used to determine chip select (CSBASE)

0: HADDR(24 : 22), (nports*4) MiB data/rank
1: HADDR(25 : 23), (nports*8) MiB data/rank
...
9: HADDR(31 : 31), (nports * 2) GiB data/rank (only two ranks used)
10: All addresses map to first chip select, (nports * 4) GiB data/rank
11-15: Reserved
See section 1.2.8 for guidance on setting up this field

8 : 5 AHB address bits used to determine internal bank index (BANKBASE)
Same range as CSBASE.
Note: If no address bits are needed to determine internal bank (number of ports on controller equals
number of internal banks on memory), this should be set equal to CSBASE.
See section 1.2.8 for guidance on setting up this field

4 : 2 AHB address bits used to determine row (ROWBASE)
0: HADDR(..: 10), 1 KiB/row (over whole data bus)
1: HADDR(.. : 11), 2 KiB/row (over whole data bus)
...
5: HADDR(.. : 15), 32 KiB/row (over whole data bus)
6-7: Reserved
See section 1.2.8 for guidance on setting up this field

1 : 0 AHB address bits used to determine column (COLBASE)
0: HADDR(N:1), 16 data bits/column (hwidth=1, enx4=1)
1: HADDR(N:2), 32 data bits/column (hwidth=1,enx4=0 or hwidth=0,enx4=1)
2: HADDR(N:3), 64 data bits/column (hwidth=0, enx4=0)
3: Reserved
Note this field must be set corresponding to the backend hwidth/enx4 configuration for correct con-
troller operation.

AHB address decode register

47 www.cobham.com/gaisler

1.10.30

Table 42. 0x204 - FTADDR AHB access configuration register
31 28 27 24 23 19 18 16

PRELIMHI PREFLIMLO RESERVED WQUEUEMAX

0100 0010 r 000

rw rw 0 rw

15 13 12 5 4 3 2 1 0

ROWIDLECNT ROWOTM ROWOPOL UEERR UESIG CESIG

000 00000000 01 1 1 1

rw rw rw rw rw rw

31 : 28 High prefetch threshold, controls how many read commands, plus 1, should be issued ahead of time
by the prefetcher. Must not be set higher than the capacity of the prefetch buffer. Only used if
prefetching is enabled in the prefetch configuration register.

27 : 24 Low prefetch threshold, controls at what fill level of the prefetch buffer the prefetcher will fetch
more data. If set to 0 the prefetcher will not fetch more data until the prefetch buffer is empty, setting
it higher will allow the prefetching latency to be masked by remaining data already in the prefetch
buffer. Only used if prefetching is enable the prefetch configuration register.

23 : 19 Reserved
18 : 16 Maximum writes allowed to be queued up inside the controller before giving wait states.

Setting the field to 0 disables the maximum, and it is then limited only by FIFO depth.
15 : 13 Row idle cycle count. This allows, in addition to other row policy settings in this register, to controls

the minimum number of AHB cycles, plus 1, the AHB port will stay in idle state with a row opened
before sending a row-close hint to the back-end.

12 : 5 Row open cycle count. This allows, in addition to the other row policy settings in this register, to set
a minimum number of AHB cycles between opening a row and sending a row-close hint to the back-
end. This can be matched to the tRAS configured in the back-end.

4 : 3 Front-end row close policy:
00 = aggressive, send row-close hint as early as possible. (for reads, before even receiving data)
01 = standard, send row-close hint whenever AHB port is in idle state.
10 = delayed, as standard but in addition waits for writes queued up in the command FIFO to be
emptied by the back-end before send.
11 = keep rows open as long as possible, do not send row-close hints to back-end

2 Enable AHB error responses on uncorrectable EDAC errors when reading
1 Enable sideband signal for uncorrectable error when reading

This setting has no functional impact, except for masking the UE output signal
0 Enable sideband signal for correctable error when reading

This setting has no functional impact, except for masking the CE output signal

AHB access configuration register

48 www.cobham.com/gaisler

1.10.31

Table 43. 0x208 - FTADDR prefetch configuration register
31 26 25 16

RESERVED PREFTO

0 1111111111

r rw

15 0

PREFETCH MASTER MASK

1111111111111111

rw

31 : 26 Reserved
25 : 16 Prefetch timeout, if prefetch data has not been fetched within the specified number of AHB clock

cycles, the prefetch data is discarded.
15 : 0 Prefetch enable mask per master.

Each register bit controls whether the corresponding master will trigger the prefetching unit.
Less bits may be implemented depending on the controller configuration.

Prefetch configuration register

1.10.32 Scrubber configuration register 1

Table 44. 0x20C - FTADDR scrubber configuration register 1
31 28 27 24 23 20 19 16

INITEN READBACK SCRUBPEND RESERVED

0000 0000 0000 0

rw rw rw r

15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED RGALL IEXD IADR SFCAL BESFI SFIDBL SEFISTATE SHOLD SEFIEN SCRUBCNT SCREN

0 0 0 0 0 0 0 00 0 0 00 0

r rw rw rw rw rw rw r rw rw rw rw

31 : 28 Initialization mode start, one bit per AHB port. When this bit is set to 1, the port will perform a full
initialization run through the whole memory. The bit is cleared after completion.
Reads 1 if currently performing initialization.

27 : 24 Read-back start, one bit per AHB port. When this bit is set to 1, the port will perform a read-back and
compare with expected initialization data (corresponding to current configuration).
This can be set to 1 at the same time as the INITEN field in order to trigger a initialization followed
back-to-back with a read-back without allowing any other accesses in between.

23 : 20 Scrubber iteration pending, one bit per AHB port. This reads 1 when the periodic scrubber counter
has expired, and a scrubber iteration is pending. This can be set to 1 manually by writing, and will in
that case trigger a single iteration of the scrubber.

19 : 13 Reserved
12 SEFI handler regenerate all. If set to 0, regeneration will only scrub between scrubber start and

scrubber end address, if set to 1 all memory will be scubbed during regeneration.
11 Initialize with existing data mode enable.

When performing initialization (using INITEN field of SEFI handler and init register) and this field
is set to 1, use read-write cycles to keep the existing data content and only update the checkbits using
read-write cycles.
Note that read-back after initialization will return errors after initializing the data in this mode, since
the data contents will not match the init pattern.

10 Initialize with address mode enable.
When set to 1, the lower bits of the initialization and read-back pattern will not be taken from the ini-
tialization pattern registers but instead be set to the current rank,bank,row and column of the address
being written.

9 Perform PHY re-calibration on byte lane when a SEFI is detected on that byte lane.

49 www.cobham.com/gaisler

1.10.33

Table 45. 0x210 - FTADDR scrubber configuration register 2
31 28 27 16

RESERVED SEFI BYTE LANE MASK

0 000000000000

r r

15 0

SCRUBBER INTERVAL

1111111111111111

rw

31 : 28 Reserved
27 : 16 Mask of SEFI status for each byte lane, 0=normal 1=SEFI
15 : 0 Scrubber interval, time in AHB cycles between each scrubber iteration, minus one

Scrubber configuration register 2

8 Set to 1 to handle byte lane errors signaled by PHY as a detected SEFI. If set to 0, byte lane errors
are not handled as a detected SEFI but are still reported through the BEREI interrupt.
Note that this only has effect if the read-error signal is supported by the PHY and the PHY read error
is enabled in the back-end’s EDAC configuration register (see 1.10.22)

7 Set to 1 to disable the byte lane in the PHY when a SEFI is detected on that byte lane.
6 : 5 Current SEFI handling state machine state:

00 = Idle, scanning for SEFI
01 = SEFI detected, reprogramming mode registers
10 = SEFI detected, performing regeneration process
11 = Reserved for future use (currently never used)

4 SEFI handler hold off.
While set to 1, triggered SEFI will not start regeneration process until cleared.
If set to 1 while regeneration ongoing, the regeneration will be suspended until cleared.

3 SEFI handler enabled
If set to 0, a detected SEFI will set the byte lane mask but not trigger any regeneration action.
If set to 1, a detected SEFI will trigger the SEFI state machine to perform reprogramming and regen-
eration.

2 : 1 Length of each scrub iteration in 8-column bursts, minus one.
0 Enable scrubber

Table 44. 0x20C - FTADDR scrubber configuration register 1

50 www.cobham.com/gaisler

1.10.34

Table 46. 0x214 - FTADDR IRQ pending register
31 16

RESERVED

0

r

15 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED PSFI BEREI BESCI SFI UEI CEI

0 0 0 0 0 0000 0000

r wc wc wc wc wc wc

31 : 12 Reserved
11 Permanent SEFI detected. Write 1 to clear
10 Backend read error signaled by PHY. Write 1 to clear
9 Backend EDAC self-check triggered. Write 1 to clear.
8 SEFI detected IRQ ocurred. Write 1 to clear.
7 : 4 Uncorrectable error IRQ occurred, uncorrectable error address register is valid. Write 1 to clear.

A separate IRQ bit for each AHB port is implemented
3 : 0 Correctable error IRQ occurred, correctable error address register is valid. Write 1 to clear.

A separate IRQ bit for each AHB port is implemented.

IRQ pending register

1.10.35 IRQ enable register

This register controls whether the interrupt line from the controller is asserted when the corresponding
bit in the IRQ pending register goes from 0 to 1. If the IRQ is disabled in this register, then the IRQ
pending bit will still be set in the same way, but the interrupt line will not be asserted.

Table 47. 0x218 - FTADDR IRQ enable register
31 16

RESERVED

0

r

15 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED PSFIE BEREIE BESCIE SFIE RESERVED UEIE RESERVED CEIE

0 0 0 0 0 0

r wc r wc r wc

31 : 12 Reserved
11 Permanent SEFI IRQ enable
10 Backend read error IRQ enable
9 Backend EDAC self-check IRQ enable
8 SEFI detected IRQ enable
7 : 5 Reserved
4 Uncorrectable error IRQ enable. Enables/disables the IRQ for all AHB ports
3 : 1 Reserved
0 Correctable error IRQ enable. Enables/disables the IRQ for all AHB ports

51 www.cobham.com/gaisler

1.10.36

Table 48. 0x21C - FTADDR scrubber UE register
31 30 29 27 26 24 23 16

SCRUE RBERR SECSNO SEBANK SEROW(15:8)

(nr) (nr) (nr) (nr) (nr)

wc wc r r r

15 8 7 0

SEROW(7:0) SECOLHI

(nr) (nr)

r r

31 Set to 1 when uncorrectable error was detected while scrubbing on one of the ports. Must be cleared
before another error can be logged in this register.

30 Set to 1 when an error during initialization readback was detected on one of the ports. Must be
cleared before another error can be logged in this register.

29 : 27 Chip select number of scrubber uncorrectable error or readback error. Only valid when SCRUE or
RBERR fields in this register are set.

26 : 24 Internal bank number of scrubber uncorrectable error or readback error. Only valid when SCRUE or
RBERR fields in this register are set.

23 : 8 Row number of scrubber uncorrectable error or readback error. Only valid wen SCRUE or RBERR
fields in this register are set.

7 : 0 Top bits (11:4) of column number where scrubber uncorrectable error or readback error occurred.
Only valid when SCRUE or RBERR fields in this register are set.

Scrubber UE register

1.10.37 Scrubber CE byte lane counter register 1,2,3

Register 1 holds counters for bits 95:64 (check bits), register 2 holds counters for bits 63:32 (high part
of data bits), register 3 holds counters for bits 31:0. All registers are cleared by writing to the BLCLR
bit in byte lane error counter register 4.

Table 49. 0x220-0x228, FTADDR byte lane error counter register N (N=1..3)
31 30 29 24 23 22 21 16

RESERVED LANE 4N+3 ERROR COUNTER RESERVED LANE 4N+2 ERROR COUNTER

0 000000 0 000000

r r r r

15 14 13 8 7 6 5 0

RESERVED LANE 4N+1 ERROR COUNTER RESERVED LANE 4N+0 ERROR COUNTER

0 000000 0 000000

r r r r

31 : 30 Reserved
29 : 24 Wrapping scrubber corrected error counter for bits 95:88 / 63:56 / 31:24
23 : 22 Reserved
21 : 16 Wrapping scrubber corrected error counter for bits 87:80 / 55:48 / 23:16
15 : 14 Reserved
13 : 8 Wrapping scrubber corrected error counter for bits 79:72 / 47:40 / 15:8
7 : 6 Reserved
5 : 0 Wrapping scrubber corrected error counter for bits 71;64 / 39:32 / 7:0

52 www.cobham.com/gaisler

1.10.38

Table 50. 0x22C - FTADDR byte lane error counter register 4
31 30 16

BLCLR RESERVED

0 0

w r

15 6 5 0

RESERVED BYTE LANE WATERMARK

0 000000

r r

31 Byte lane counter clear (BLCLR). Writing 1 to this bit clears the byte lane counters and resets the
water mark

30 : 6 Reserved
5 : 0 Byte lane error counter watermark. This tracks the slowest moving of the byte lane error counters.

Scrubber CE byte lane counter register 4

1.10.39

Table 51. 0x230 - FTADDR address error counter register 1
31 30 28 27 24 23 20 19 16

AECLR RESERVED ADCTRCS2 ADCTRCS1 ADCTRCS0

0 0 (nr) (nr) (nr)

w r r r r

15 12 11 8 7 4 3 0

RESERVED ADCTRBA2 ADCTRBA1 ADCTRBA0

0 (nr) (nr) (nr)

r r r r

31 Address error counter clear (AECLR), writing 1 to this field clears all the counters in the address
error counter registers.

30 : 28 Reserved
27 : 24 Saturating signed counter for chip select bit 2 (raised for CE in CS#7,6,5,4 lowered for CS#3,2,1,0)

Not implented if support for 4 or less chip selects implemented.
23 : 20 Saturating signed counter for chip select bit 1 (raised for CE in CS#7,6,3,2, lowered for CS#5,4,1,0)

Not implemented if support for 2 or less chip selects implemented
19 : 16 Saturating signed counter for chip select bit 0 (raised for CE in CS#7,5,3,1, lowered for CS#6,4,2,0)

Not implemented if support for 1 chip select implemented
15 : 12 Reserved
11 : 8 Saturating signed counter for bank address bit 2 (raised if BA2=1, lowered if BA2=0 in address)
7 : 4 Saturating signed counter for bank address bit 1 (raised if BA1=1, lowered if BA1=0 in address)
3 : 0 Saturating signed counter for bank address bit 0 (raised if BA0=1, lowered if BA0=0 in address)

Scrubber CE address counter register 1

53 www.cobham.com/gaisler

1.10.40

Table 52. 0x234-0x238, FTADDR address error counter register 2/3
31 28 27 24 23 20 19 16

ADCTRROW15 / 7 ADCTRROW14 / 6 ADCTRROW13 / 5 ADCTRROW 12 / 4

(nr) (nr) (nr) (nr)

r r

15 12 11 8 7 4 3 0

ADCTRROW 11 / 3 ADCTRROW10 / 2 ADCTRROW9 / 1 ADCTRROW8 / 0

(nr) (nr) (nr) (nr)

r r r r

31 : 28 Saturating signed counter for row address bit 15 / 7
27 : 24 Saturating signed counter for row address bit 14 / 6
23 : 20 Saturating signed counter for row address bit 13 / 5
19 : 16 Saturating signed counter for row address bit 12 / 4
15 : 12 Saturating signed counter for row address bit 11 / 3
11 : 8 Saturating signed counter for row address bit 10 / 2
7 : 4 Saturating signed counter for row address bit 9 / 1
3 : 0 Saturating signed counter for row address bit 8 / 0

Scrubber CE address counter register 2,3

1.10.41

Table 53. 0x23C, FTADDR address error counter register 4
31 28 27 24 23 20 19 16

ADCTRCOL11 ADCTRCOL10 ADCTRCOL9 ADCTRCOL8

(nr) (nr)) (nr) (nr)

r r

15 12 11 8 7 4 3 0

ADCTRCOL7 ADCTRCOL6 ADCTRCOL5 ADCTRCOL4

(nr) (nr) (nr) (nr)

r r r r

31 : 28 Saturating signed counter for column address bit 11 (physically on AD13)
27 : 24 Saturating signed counter for column address bit 10 (physically on AD11)
23 : 20 Saturating signed counter for column address bit 9
19 : 16 Saturating signed counter for column address bit 8
15 : 12 Saturating signed counter for column address bit 7
11 : 8 Saturating signed counter for column address bit 6
7 : 4 Saturating signed counter for column address bit 5
3 : 0 Saturating signed counter for column address bit 4

Scrubber CE address counter register 4

54 www.cobham.com/gaisler

1.10.42 Access CE/UE location register, port 0,1,2,3

For each AHB port two registers are implemented, the first holding the address of a correctable error,
the second holding the address of an uncorrectable error. These are only valid if the corresponding
IRQ pending bit is set, and will not be updated until the IRQ pending bit has been cleared.

Table 54. 0x240-0x25C - FTADDR AHB CE/UE location register, port 0,1,2,3
31 16

CE/UE ADDRESS (31:16)

(nr)

r

15 0

CE/UE ADDRESS (15:0)

(nr)

r

31 : 0 AHB address of access with error.

1.10.43 Prefetch status register, port N

Table 55. 0x260-0x26C, FTADDR prefetch status register for port #N
31 30 29 25 24 16

PFACT PFDRN PREF FETCH POSITION PREF READOUT POSITION

0 0 (nr) (nr)

r r r r

15 0

PREFETCH ROW

(nr)

r

31 Prefetcher activated status. 1=activated, 0=idle
30 Prefetcher draining status, 1=draining, 0=normal

This will be set after a master accessing a different address than predicted by the prefetcher before all
prefetch data in flight has been discarded

29 : 25 Current fetch position of the prefetcher, column bits 7:3. Only valid when PFACT is 1.
The other, higher, column bits can be deducted from the read position

24 : 16 Current read position of the prefetcher, column bits 11:3. Only valid when PFACT is 1.
15 : 0 Current prefetcher row. Only valid when PFACT is 1.

Note: 1-4 separate registers with the same format is implemented, one for each AHB port. Additional
bank/CS address bits are in the prefetch bank register shared between all the ports.

55 www.cobham.com/gaisler

1.10.44

Table 56. 0x270 - FTADDR prefetch bank status register
31 30 29 27 26 24 23 22 21 19 18 16

RESERVED PREF3CS PREF3IBANK RESERVED PREF2CS PREF2IBANK

0 (nr) (nr) 0 (nr) (nr)

r r r r r r

15 14 13 11 10 8 7 6 5 3 2 0

RESERVED PREF1CS PREF1IBANK RESERVEVD PREF0CS PREF0IBANK

0 (nr) (nr) 0 (nr) (nr)

r r r r r r

31 : 30 Reserved
29 : 27 Port 3 prefetcher current chip select number. Only valid when PFACT is set in prefetch status regis-

ter for port 3. Only implemented in 4-port configuration
26 : 24 Port 3 prefetcher internal bank number high bits (lower bits implied “11” by port number). Only

valid when PFACT is set in prefetch status register for port 3. Only implemented in 4-port configura-
tion (1 bit wide).

23 : 22 Reserved
21 : 19 Port 2 prefetcher current chip select number. Only valid when PFACT is set in prefetch status regis-

ter for port 2. Only implemented in 4-port configuration
18 : 16 Port 2 prefetcher internal bank number high bits (lower bits implied “10” by port number). Only

valid when PFACT is set in prefetch status register for port 2. Only implemented in 4-port configura-
tion (1 bit wide).

15 : 14 Reserved
13 : 11 Port 1 prefetcher current chip select number. Only valid when PFACT is set in prefetch status regis-

ter for port 1. Only implemented in 4-port and 2-port configurations.
10 : 8 Port 1 prefetcher internal bank number high bits (lower bits implied “1” or “01” by port number).

Only valid when PFACT is set in prefetch status register for port 1. Field is 0-2 bits wide depending
on number of ports configured.

7 : 6 Reserved
5 : 3 Port 0 prefetcher current chip select number. Only valid when PFACT is set in prefetch status regis-

ter for port 0.
2 : 0 Port 0 prefetcher internal bank number high bits (in 2/4-port configurations, lower bits implied “0”

or “00” by port number). Only valid when PFACT is set in prefetch status register for port 0. Field is
1-3 bits wide depending on number of ports configured.

Prefetch bank status register

56 www.cobham.com/gaisler

1.10.45 Scrubber start address register

Table 57. 0x274 - FTADDR scrubber start address register
31 30 28 27 25 24 16

RES SCSTCS SCSTIBANK SCSTROW(15:7)

0 000 000 000000000

r rw rw rw

15 9 8 0

SCSTROW(6:0) SCSTCOL

0000000 000000000

rw rw

31 Reserved
30 : 28 Scrubber start address chip select
27 : 25 Scrubber start address internal bank. For 2/4 port configurations, this field holds only the high inter-

nal bank bits, since the lower bits are inferred from the port number.
24 : 9 Scrubber start address row
8 : 0 Scrubber start address column number bits 11:3. Bits 2:0 of the starting column are always 0 by

design.

1.10.46 Scrubber end address register

Table 58. 0x278 - FTADDR scrubber end address register
31 30 28 27 25 24 16

RES SCEDCS SCEDIBANK SCEDROW(15:7)

0 111 111 111111111

r rw rw rw

15 9 8 0

SCEDROW(6:0) SCEDCOL

1111111 111111111

rw rw

31 Reserved
30 : 28 Scrubber end address chip select
27 : 25 Scrubber end address internal bank. For 2/4 port configurations, this field holds only the high inter-

nal bank bits, since the lower bits are inferred from the port number.
24 : 9 Scrubber end address row
8 : 0 Scrubber end address column number bits 11:3. Bits 2:0 of the starting column are always 0 by

design.

57 www.cobham.com/gaisler

1.10.47

Table 59. 0x27C - FTADDR frontend FIFO error counter register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES RS3UE RS3CE RD3UE PF3UE RDPF3CE RES RS2UE RS2CE RD2UE PF2UE RDPF2CE

0 (nr) (nr) (nr) (nr) (nr) 0 (nr) (nr) (nr) (nr) (nr)

r wc wc wc wc wc r wc wc wc wc wc

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES RS1UE RS1CE RD1UE PF1UE RDPF1CE RES RS0UE RS0CE RD0UE PF0UE RDPF0CE

0 (nr) (nr) (nr) (nr) (nr) 0 (nr) (nr) (nr) (nr) (nr)

r wc wc wc wc wc r wc wc wc wc wc

31 Reserved
30 Uncorrectable error occurred on response FIFO for port #3
29 : 28 Correctable error counter for response FIFO for port #3
27 Uncorrectable error occurred on read-data FIFO for port #3
26 Uncorrectable error occurred on prefetch-data FIFO for port #3
25 :24 Correctable error saturating counter for read-data and prefetch-data FIFOs for port #3
23 Reserved
22 Uncorrectable error occurred on response FIFO for port #3
21 : 20 Correctable error counter for response FIFO for port #3
19 Uncorrectable error occurred on read-data FIFO for port #3
18 Uncorrectable error occurred on prefetch-data FIFO for port #3
17 :16 Correctable error saturating counter for read-data and prefetch-data FIFOs for port #3
15 Reserved
14 Uncorrectable error occurred on response FIFO for port #3
13 : 12 Correctable error counter for response FIFO for port #3
11 Uncorrectable error occurred on read-data FIFO for port #3
10 Uncorrectable error occurred on prefetch-data FIFO for port #3
9 :8 Correctable error saturating counter for read-data and prefetch-data FIFOs for port #3
7 Reserved
6 Uncorrectable error occurred on response FIFO for port #3
5 : 4 Correctable error counter for response FIFO for port #3
3 Uncorrectable error occurred on read-data FIFO for port #3
2 Uncorrectable error occurred on prefetch-data FIFO for port #3
1 :0 Correctable error saturating counter for read-data and prefetch-data FIFOs for port #3

Note that error counters are only implemented if the port is implemented and the corresponding FIFO implements
ECC. Counters are not reset and should be written with ones to be cleared.

Frontend FIFO error counter register

58 www.cobham.com/gaisler

1.10.48

Table 60. 0x280-0x28C - FTADDR initialization pattern register N
31 16

INITIALIZATION PATTERN DATA (31:16)

*

rw

15 0

INITIALIZATION PATTERN DATA(15:0)

*

rw

31 : 0 Data to use for initialization and readback operation.

Initialization pattern register 1,2,3,4

1.10.49 Scrubber position register, port N

Table 61. 0x290-0x29C - FTADDR scrubber position register
31 30 28 27 25 24 16

SCWR SCCURCS SCCURIBANK SCCURROW(15:7)

0 000 000 000000000

r r r r

15 9 8 0

SCCURROW(6:0) SCCURCOL

0000000 000000000

r r

31 Wrapped bit. Indicates that the scrubber for this port has completed a full iteration.
30 : 28 Scrubber current chip select
27 : 25 Scrubber current internal bank. For 2/4 port configurations, this field holds only the high internal

bank bits, since the lower bits are inferred from the port number.
24 : 9 Scrubber current row
8 : 0 Scrubber current column number bits 11:3

59 www.cobham.com/gaisler

1.10.50 ISD65 PHY specific registers

The registers in this section are only implemented in the ISD65 implementation. They are accessed
via the indirect PHY register interface.

Table 62. PHY register 0x00 - Manual calibration register 1
31 30 16

RILCK RESERVED

0 0

rw r

15 4 3 2 1 0

RESERVED RLEN REDGE RGLEN WLEN

0 0 0 0 0

r rw rw rw rw

31 Register interface lock. Set to 1 to prevent leveling state machines from changing the fields of this
register

30 : 4 Reserved
3 Manual control of dfi_rdlvl_en
2 Manual control of dfi_rdlvl_edge
1 Manual control of dfi_rdlvl_gate_en
0 Manual control of dfi_wrlvl_en

Table 63. PHY register 0x01 - Manual calibration register 2
31 16

RESERVED

0

r

15 6 5 4 3 2 1 0

RESERVED RLLD WLLD WLSB URLR UWLR

0 00 0 0 0 0

r w w w w w

31 : 6 Reserved
5 : 4 Manual control of dfi_rdlvl_load
3 Manual control of dfi_wrlvl_load
2 Manual control of dfi_wrlvl_strobe
1 Update rdlvl_resp. Set this field to 1 to trigger sampling of dfi_rdlvl_resp
0 Update wrlvl_resp. Set this field to 1 to trigger sampling of dfi_wrlvl_resp

Table 64. PHY register 0x02-0x04 - Gate coarse delay register 1-3
31 30 29 24 23 18 17 16

RESERVED GCD4/9 GCD3/8 GCD2/7(5:4)

0 (nr) (nr) (nr)

r rw rw rw

15 12 11 6 5 0

.GCD2/7(3:0) GCD1/6/11 GCD0/5/10

(nr) (nr) (nr)

rw rw rw

31 : 30 Reserved
29 : 24 Gate coarse delay for, register 1: byte lane 4, register 2: byte lane 9. register 3: reserved.
23 : 18 Gate coarse delay for, register 1: byte lane 3, register 2: byte lane 8. register 3: reserved.
17 : 12 Gate coarse delay for, register 1: byte lane 2, register 2: byte lane 7, register 3: reserved
11 : 6 Gate coarse delay for, register 1: byte lane 1, register 2: byte lane 6, register 3: byte lane 11
5 : 0 Gate coarse delay for, register 1: byte lane 0, register 2: byte lane 5, register 3: byte lane 10

Table 65. PHY register 0x05-0x07 - Gate fine delay register 1-3
31 30 29 24 23 18 17 16

RESERVED GFD4/9 GFD3/8 GFD2/7(5:4)

0 (nr) (nr) (nr)

r rw rw rw

15 12 11 6 5 0

.GFD2/7(3:0) GFD1/6/11 GFD0/5/10

(nr) (nr) (nr)

rw rw rw

31 : 30 Reserved
29 : 24 Gate fine delay for, register 1: byte lane 4, register 2: byte lane 9. register 3: reserved.
23 : 18 Gate fine delay for, register 1: byte lane 3, register 2: byte lane 8. register 3: reserved.
17 : 12 Gate fine delay for, register 1: byte lane 2, register 2: byte lane 7, register 3: reserved
11 : 6 Gate fine delay for, register 1: byte lane 1, register 2: byte lane 6, register 3: byte lane 11
5 : 0 Gate fine delay for, register 1: byte lane 0, register 2: byte lane 5, register 3: byte lane 10

Table 66. PHY register 0x08-0x0A - Write leveling delay register 1-3
31 30 29 24 23 18 17 16

RESERVED WLD4/9 WLD3/8 WLD2/7(5:4)

0 (nr) (nr) (nr)

r rw rw rw

15 12 11 6 5 0

.WLD2/7(3:0) WLD1/6/11 WLD0/5/10

(nr) (nr) (nr)

rw rw rw

31 : 30 Reserved
29 : 24 Gate coarse delay for, register 1: byte lane 4, register 2: byte lane 9. register 3: reserved.
23 : 18 Gate coarse delay for, register 1: byte lane 3, register 2: byte lane 8. register 3: reserved.
17 : 12 Gate coarse delay for, register 1: byte lane 2, register 2: byte lane 7, register 3: reserved
11 : 6 Gate coarse delay for, register 1: byte lane 1, register 2: byte lane 6, register 3: byte lane 11
5 : 0 Gate coarse delay for, register 1: byte lane 0, register 2: byte lane 5, register 3: byte lane 10

60 www.cobham.com/gaisler

Table 67. PHY register 0x0B-0x22 - Read delay register 1-24
31 28 27 21 20 16

RESERVED RLD3 RLD2(6:2)

0 (nr) (nr)

r rw rw

15 14 13 7 6 0

.RLD2(1:0) RLD1 RLD07

(nr) (nr) (nr)

rw rw rw

31 : 28 Reserved
27 : 21 Read data delay for data bit 3, 7, 11, ..., 95.
20 : 14 Read data delay for data bit 2, 6, 10, ..., 94.
13 : 7 Read data delay for data bit 1, 5, 9, ..., 93.
6 : 0 Read data delay for data bit 0, 4, 8, ..., 92.

Table 68. PHY register 0x23-0x25 - Write leveling response register 1-3
31 16

WRITE LEVELING RESPONSE (31:16)

0

r

15 0

WRITE LEVELING RESPONSE (15:0)

(nr)

r

31 : 0 Register 1: Write leveling response for bits 31:0
Register 2: Write leveling response for bits 63:32
Register 3: Write leveling response for bits 95:64

Table 69. PHY register 0x26-0x28 - Read leveling response register 1-3
31 16

READ LEVELING RESPONSE (31:16)

(nr)

r

15 0

READ LEVELING RESPONSE (15:0)

(nr)

r

31 : 0 Register 1: Read leveling response for bits 31:0
Register 2: Read leveling response for bits 63:32
Register 3: Read leveling response for bits 95:64

61 www.cobham.com/gaisler

Table 70. PHY register 0x29 - MPR bit position register 1
31 24 23 21 20 18 17 16

RESERVED MB7 MB6 MB5(2:1)

0 000 000 00

r rw rw rw

15 14 12 11 9 8 6 5 3 2 0

MB5(0) MB4 MB3 MB2 MB1 MB0

0 000 000 000 000 000

rw rw rw rw rw rw

31 : 24 Reserved
23 : 21 MPR result bit position for byte lane 7
20 : 18 MPR result bit position for byte lane 6
17 : 15 MPR result bit position for byte lane 5
14 : 12 MPR result bit position for byte lane 4
11 : 9 MPR result bit position for byte lane 3
8 : 6 MPR result bit position for byte lane 2
5 : 3 MPR result bit position for byte lane 1
2 : 0 MPR result bit position for byte lane 0

Table 71. PHY register 0x2A - MPR bit position register 2
31 24 23 21 20 18 17 16

MPREN RESERVED

1 0

rw r

15 14 12 11 9 8 6 5 3 2 0

RES MB11 MB10 MB9 MB8 MB7

0 000 000 000 000 000

r rw rw rw rw rw

31 MPR enable. If set to 1 the DDR3 MPR register will be used for incremental read leveling, otherwise
regular reads with a test pattern will be used. As the MPR register is only guaranteed to return the
result on one bit, the bit for the result on each byte lane is configured via the MB fields.

20 : 15 Reserved
14 : 12 MPR result bit position for byte lane 11
11 : 9 MPR result bit position for byte lane 10
8 : 6 MPR result bit position for byte lane 9
5 : 3 MPR result bit position for byte lane 8
2 : 0 MPR result bit position for byte lane 7

62 www.cobham.com/gaisler

Table 72. PHY register 0x2B - Training configuration register
31 16

RESERVED

0

r

15 6 5 4 3 2 1 0

RESERVED RIEN GIEN WIEN RFEN GFEN WFEN

0 1 1 1 1 1 1

r rw rw rw rw rw rw

31 : 6 Reserved
5 Incremental read eye training enable. If this is set to 0, the full read eye training willl bbe skipped

and no action is taken when incremental read eye training is requested by the controller.
4 Incremental gate training enable. If this is set to 0, the full gate training will be skipped and no action

is taken when incremental gate training is requested by the controller.
3 Incremental write leveling enable. If this is set to 0, the incremental write leveling will be skipped

and no action is taken when incremental write leveling is requested by the controller.
2 Read eye training enable. If this is set to 0, the full read eye training willl bbe skipped and no action

is taken when read eye training is requested by the controller.
1 Gate training enable. If this is set to 0, the full gate training will be skipped and no action is taken

when gate training is requested by the controller.
0 Write leveling enable. If this is set to 0, the full write leveling will be skipped and no action is taken

when write leveling is requested by the controller

63 www.cobham.com/gaisler

1.11 Vendor and device identifiers

When the GRLIB version of the IP core’s top level is used, the core will supply plug-n-play informa-
tion to the system through the AHB output record. This controller is identified with vendor ID 0x001
(Cobham Gaisler) and device ID NNN. The version described in this document is version 0.

64 www.cobham.com/gaisler

1.12 Configuration options

1.12.1 Configuration options for stand-alone version

Table 73. Configuration options for stand-alone version (ftaddr_sa)

Generic Function Allowed range Default
ahbbits Width of AHB read/write data buses and maximum

access size.
32, 64, 128 128

ddrbits Width of DDR data bus.
This is the width of the external data bus, so the DFI data
buses will have double the width.

32 - 96 96

nports Number of implemented AHB ports 1-4 1
nahbmst Number of AHB masters on each bus (detemines maxi-

mum HMASTER value)
1 - 16 16

numcs Number of chip select signals implemented 1 - 8 1
ctrldup Option to create duplicate identical copies of memory

control signals. Set to 1 for single copy corresponding to
standard DFI interface.

1 - 4 1

numrwen Width of dfi_rddata_en, dfi_rddata_valid, dfi_wrdata_en
signals. Corresponds to ‘DFI Data Enable Width’ and
‘DFI Read Data Enable Width’ in DFI standard.

1 - N 1

numrdlvlphy Width of dfi_rdlvl_req and dfi_rdlvl_gate_req signals.
Corresponds to ‘DFI Read Leveling PHY IF Width’ in
DFI standard

1 - N 1

numrdlvlmc Width of dfi_rdlvl_en, dfi_rdlvl_gate_en,
dfi_rdlvl_edge, dfi_rdlvl_load signals. Corresponds to
‘DFI Read Leveling MC IF Width’ in DFI standard.

1 - N 1

numwrlvlphy Width of dfi_wrlvl_req signal. Corresponds to ‘DFI
Write Leveling PHY IF Width’ in DFI standard.

1 - N 1

numwrlvlmc Width of dfi_wrlvl_en signal. Corresponds to ‘DFI Write
Leveling MC IF Width’ in DFI standard

1 - N 1

rdblvlbits Width per bit of dfi_rdlvl_delay and width per byte of
dfi_wrlvl_delay vector. Corresponds to ‘DFI Read Lev-
eling Delay Width’ and ‘DFI Write Leveling Delay
Width’ in DFI standard

1 - N 1

rdglvlbits Width per byte lane of dfi_rdlvl_gate_delay signal. Cor-
responds to ‘DFI Read Leveling Gate Delay Width’ in
DFI standard

1 - N 1

rdgflvlbits Width per byte lane of dfi_rdlvl_gate_fdelay signal. 1 - N 1
wrlvlbits Width per byte lane of dfi_wrlvl_delay signal 1 - N 1
phyimpl PHY implementation ID. See section 1.3.11. 0 - PHY_MAX 0
genphy_trden Specifies trddata_en parameter for generic DFI imple-

mentation. Add 100 to specify CAS latency relative
delay.

0-11, 95-110 0

genphy_twrlat Specifies tphy_wrlat parameter for generic DFI imple-
mentation. Add 100 to specify write latency relative
delay.

0-11, 95-110 0

genphy_twrdata Specifies twrdata parameter for generic DFI implemen-
tation.

0 - 11 0

dynrst Enable reset values control from input signals 0 - 1 0
phyctrlbits Number of bits implemented in generic PHY control reg-

ister
0 - 32 0

Table 73 shows the configuration options (VHDL generics) for the stand-alone version of the core.

65 www.cobham.com/gaisler

1.12.2 Configuration options for GRLIB version

Tables 74 shows the configuration options (VHDL generics) of the GRLIB version of the
core.

Table 74. Configuration options for GRLIB version (ftaddr_gr)

Generic Function Allowed range Default
hindex0 AHB master index for port 0 0 - NAHBMST-1 0
hindex1 AHB master index for port 1 0 - NAHBMST-1 0
hindex2 AHB master index for port 2 0 - NAHBMST-1 0
hindex3 AHB master index for port 3 0 - NAHBMST-1 0
haddr0 ADDR field of the AHB BAR0 defining the SDRAM

address area on port 0.
0 - NAPBSLV-1 0

hmask0 MASK field of the AHB BAR0 defining the SDRAM
address area on port 0.

0 - 16#FFF# 0

haddr1 ADDR field of the AHB BAR0 defining the SDRAM
address area on port 1.

0 - NAPBSLV-1 0

hmask1 MASK field of the AHB BAR0 defining the SDRAM
address area on port 1.

0 - 16#FFF# 0

haddr2 ADDR field of the AHB BAR0 defining the SDRAM
address area on port 2.

0 - NAPBSLV-1 0

hmask2 MASK field of the AHB BAR0 defining the SDRAM
address area on port 2.

0 - 16#FFF# 0

haddr3 ADDR field of the AHB BAR0 defining the SDRAM
address area on port 3.

0 - NAPBSLV-1 0

hmask3 MASK field of the AHB BAR0 defining the SDRAM
address area on port 3.

0 - 16#FFF# 0

ioaddr0 ADDR field of the AHB BAR1 defining I/O address
space on port 0 where control registers are mapped.

0 - 16#FFF# 16#000#

iomask0 MASK field of the AHB BAR1 defining I/O address
space on port 0.

0 - 16#FFF# 16#FFF#

ioaddr1 ADDR field of the AHB BAR1 defining I/O address
space on port 1 where control registers are mapped.

0 - 16#FFF# 16#000#

iomask1 MASK field of the AHB BAR1 defining I/O address
space on port 1.

0 - 16#FFF# 16#FFF#

ioaddr2 ADDR field of the AHB BAR1 defining I/O address
space on port 2 where control registers are mapped.

0 - 16#FFF# 16#000#

iomask2 MASK field of the AHB BAR1 defining I/O address
space on port 2.

0 - 16#FFF# 16#FFF#

ioaddr3 ADDR field of the AHB BAR1 defining I/O address
space on port 3 where control registers are mapped.

0 - 16#FFF# 16#000#

iomask3 MASK field of the AHB BAR1 defining I/O address
space on port 3.

0 - 16#FFF# 16#FFF#

hirq Index of the interrupt line. 0 - NAHBIRQ-1 0
tech Technology value for FIFO implementation. 0 - NTECH inferred
ahbbits Width of AHB read/write data buses and maximum

access size.
32, 64, 128 AHBDW

ddrbits Width of DDR data bus.
This is the width of the external data bus, so the DFI data
buses will have double the width.

32 - 96 96

nports Number of implemented AHB ports 1-4 1
nahbmst Number of AHB masters on each bus (detemines maxi-

mum HMASTER value)
1 - 16 16

66 www.cobham.com/gaisler

numcs Number of chip select signals implemented 1 - 8 1
ctrldup Option to create duplicate identical copies of memory

control signals. Set to 1 for single copy corresponding to
standard DFI interface.

1 - 4 1

numrwen Width of dfi_rddata_en, dfi_rddata_valid, dfi_wrdata_en
signals. Corresponds to ‘DFI Data Enable Width’ and
‘DFI Read Data Enable Width’ in DFI standard.

1 - N 1

numrdlvlphy Width of dfi_rdlvl_req and dfi_rdlvl_gate_req signals.
Corresponds to ‘DFI Read Leveling PHY IF Width’ in
DFI standard

1 - N 1

numrdlvlmc Width of dfi_rdlvl_en, dfi_rdlvl_gate_en,
dfi_rdlvl_edge, dfi_rdlvl_load signals. Corresponds to
‘DFI Read Leveling MC IF Width’ in DFI standard.

1 - N 1

numwrlvlphy Width of dfi_wrlvl_req signal. Corresponds to ‘DFI
Write Leveling PHY IF Width’ in DFI standard.

1 - N 1

numwrlvlmc Width of dfi_wrlvl_en signal. Corresponds to ‘DFI Write
Leveling MC IF Width’ in DFI standard

1 - N 1

rdblvlbits Width per byte laneof dfi_rdlvl_delay vector. Corre-
sponds to ‘DFI Read Leveling Delay Width’ in DFI stan-
dard

1 - N 1

rdglvlbits Width per byte lane of dfi_rdlvl_gate_delay signal. Cor-
responds to ‘DFI Read Leveling Gate Delay Width’ in
DFI standard

1 - N 1

wrlvlbits Width per byte lane of dfi_wrlvl_delay signal. Corre-
sponds to ‘DFI Write Leveling Delay Width’ in DFI
standard

1 - N 1

phyimpl PHY implementation ID. See section 1.3.11. 0 - PHY_MAX 0
genphy_trden Specifies trddata_en parameter for generic DFI imple-

mentation. Add 100 to specify CAS latency relative
delay.

0-11, 95-110 0

genphy_twrlat Specifies tphy_wrlat parameter for generic DFI imple-
mentation. Add 100 to specify write latency relative
delay.

0-11, 95-110 0

genphy_twrdata Specifies twrdata parameter for generic DFI implemen-
tation.

0 - 11 0

fifoftmask Bit mask specifying which syncfifo_2p instances should
have the FT generic set to 1. Sum of:
1: Command FIFOs
2: Response FIFOs
4: Write data FIFOs
8: Read data FIFOs
16: Prefetch read data FIFOs

0-31 31

fifoinfmask Bit mask specifying which syncfifo_2p instances should
have the tech generic set to inferred instead of tech value
given in generic. Same encoding as fifoftmask.

0-31 0

dynrst Enable reset values control from input signals 0 - 1 0
phyctrlbits Number of bits implemented in generic PHY control reg-

ister
0 - 32 0

Table 74. Configuration options for GRLIB version (ftaddr_gr)

Generic Function Allowed range Default

67 www.cobham.com/gaisler

1.13 Signal descriptions

1.13.1 Stand-alone version

Table 75 shows the interface signals (VHDL ports) of the stand-alone version of the core.

Table 75. Signal descriptions for stand-alone version (ftaddr_sa)

Signal name Type Function Active
AHB_CLK Input AHB clock Rising
AHB_RSTN Input Reset input for AHB clock domain Low
AHB_HSEL[nports-1:0] Input AMBA AHB control and data signals.

Each signal has a separate copy for each port,
for a signal width W, port 0 is stored in
indexes (W-1):0, port 1 in indexes (2W-1):W,
and so forth.
When HSEL is asserted, an additional signal
HSEL_REG qualifies if the access is to the
register area or to the memory.

High
AHB_HSEL_REG[nports-1:0] Input High
AHB_HADDR[nports*32-1:0] Input -
AHB_HTRANS[nports*2-1:0] Input -
AHB_HSIZE[nports*3-1:0] Input -
AHB_HBURST[nports*3-1:0] Input -
AHB_HWRITE[nports-1:0] Input -
AHB_HWDATA[nports*ahbbits-1:0] Input -
AHB_HPROT[nports*4-1:0] Input -
AHB_HMASTER[nports*4-1:0] Input -
AHB_HMASTLOCK[nports-1:0] Input -
AHB_HREADY_IN[nports-1:0] Input High
AHB_HREADY[nports-1:0] Output High
AHB_HRESP[nports*2-1:0] Output -
AHB_HRDATA[nports*ahbbits-1:0] Output -
AHB_CE[nports-1:0] Output EDAC corrected error signal for each port High
AHB_UE[nports-1:0] Output EDAC uncorrectable error signal for each

port
High

IRQ_OUT Output Interrupt request output from controller. High
for single AHB clock cycle when asserted.

High

DYNSYNC Input Dynamic synchronization control signal, see
section 1.7.2. This is a pseudo-static signal
that should only change during reset.

-

DFI_CLK Input DFI interface clock Rising
DFI_RSTN Input Reset input for DFI clock domain Low
DFI_CS_N[ctrldup*numcs-1:0] Output DFI interface memory control signals. For-

warded to the memory devices by the PHY.
DFI_RESET_N is used for DDR3 only.
If ctrldup is set higher than one, multiple
identical copies of the output signals are gen-
erated.

Low
DFI_BANK[ctrldup*3-1:0] Output -
DFI_ADDRESS[ctrldup*16-1:0] Output -
DFI_RAS_N[ctrldup-1:0] Output Low
DFI_CAS_N[ctrldup-1:0] Output Low
DFI_WE_N[ctrldup-1:0] Output Low
DFI_CKE[ctrldup*numcs-1:0] Outpu High
DFI_ODT[ctrldup*numcs-1:0] Output High
DFI_RESET_N[ctrldup*numcs-1:0] Output Low
DFI_WRDATA[2*ddrbits-1:0] Output DFI memory write interface.

All bits of DFI_WRDATA_EN are driven
with identical values.

-
DFI_WRDATA_EN[numrwen-1:0] Output High
DFI_WRDATA_MASK[ddrbits/4-1:0] Output -

68 www.cobham.com/gaisler

DFI_RDDATA_EN[numrwen-1:0] Output DFI memory read interface.
All bits of DFI_RDDATA_EN are driven with
identical values. Only bit 0 of DFI_RD-
DATA_VALID is used.

High
DFI_RDDATA[2*ddrbits-1:0] Input -
DFI_RDDATA_VALID[numrwen-1:0] Input High

DFI_CTRLUPD_REQ Output DFI update interface High
DFI_CTRLUPD_ACK Input High
DFI_PHYUPD_REQ Input High
DFI_PHYUPD_TYPE[1:0] Input -
DFI_PHYUPD_ACK Output High
DFI_DATA_BYTE_DISABLE[ddrbits/8-1:0] Output DFI data byte disable signal High
DFI_DRAM_CLK_DISABLE Output DFI clock output disable signal High
DFI_INIT_COMPLETE Input DFI initialization complete signal from PHY High
DFI_RDLVL_MODE[1:0] Input DFI read leveling (gate and eye training)

interface.
-

DFI_RDLVL_REQ[numrdlvlphy-1:0] Input High
DFI_RDLVL_EN[numrdlvlmc-1:0] Output High
DFI_RDLVL_GATE_MODE[1:0] Input -
DFI_RDLVL_GATE_REQ[numrdlvlphy-1:0] Input High
DFI_RDLVL_GATE_EN[numrdlvlmc-1:0] Output High
DFI_RDLVL_CS_N[numcs-1:0] Output Low
DFI_RDLVL_EDGE[numrdlvlmc-1:0] Output -
DFI_RDLVL_DELAY[(ddrbits/8)*rdblvlbits-
1:0]

Output -

DFI_RDLVL_GATE_DELAY[(ddrbits/
8)*rdglvlbits-1:0]

Output

DFI_RDLVL_LOAD[numrdlvlmc-1:0] Output High
DFI_RDLVL_RESP[(ddrbits-1:0] Input
DFI_WRLVL_MODE[1:0] Input DFI write leveling interface -
DFI_WRLVL_REQ[numwrlvlphy-1:0] Input High
DFI_WRLVL_EN[numwrlvlmc-1:0] Output High
DFI_WRLVL_CS_N[numcs-1;0] Output Low
DFI_WRLVL_DELAY[(ddrbits/8)*rdblvlbits-
1:0]

Output -

DFI_WRLVL_LOAD[numwrlvlmc-1:0] Output High
DFI_WRLVL_STROBE[numwrlvlmc-1:0] Output High
DFI_WRLVL_RESP[ddrbits-1:0] Input -
XDFI_TERM_EN Output Enable for local termination on DQ bus.

(PHY specific signal)
High

XDFI_RDERR[(ddrbits/8)-1:0] Input Byte lane error detection signal from PHY
PHY-specific signal, tie low if unused

High

XDFI_SOFTRST Output Soft reset signal to PHY (PHY-specific sig-
nal)

High

XDFI_PHYCTRL[31:0] Output Generic PHY control register output -
XDFI_BL_RESETN[(ddrbits/8)-1:0] Output RESETN and CKE signals per byte lane, to

use instead of regular DFI signals when
implementing a memory system with reboot
support (see section 1.3.12)

Low
XDFI_BL_CKE[(ddrbits/8)-1:0] Output High

Table 75. Signal descriptions for stand-alone version (ftaddr_sa)

Signal name Type Function Active

69 www.cobham.com/gaisler

XDFI_BL_PDN[(ddrbits/8)-1:0] Output Output signal for power cycling control per
byte lane, only for use when implementing a
memory system with reboot support (see sec-
tion 1.3.12)

Low

XDFI_CLK_ZERO Output Output signal for forcing clock outputs low,
only for use when implementing a memory
system with reboot support (see section
1.3.12)

High

AFI_DQS_BURST Output Additional control signal needed when inter-
facing AFI PHY

High

AFI_WLAT[5:0] Input AFI write latency signal, only used when
interfacing AFI PHY

-

RSTVAL008[35:0] Input Reset values for configuration registers, used
only if dynrst generic is set. The name corre-
sponds to the offset in the register area of the
register.
Bits 31:0 are used as the reset value if dynrst
is set.
When bit 32 is set, and dynrst is set, this
forces the register permanently to the supplied
reset value and the corresponding register bits
can be optimized out by the synthesis.
Bit 35:33 are currently unused.

-
RSTVAL00C[35:0] Input -
RSTVAL010[35:0] Input -
RSTVAL014[35:0] Input -
RSTVAL018[35:0] Input -
RSTVAL01C[35:0] Input -
RSTVAL020[35:0] Input -
RSTVAL024[35:0] Input -
RSTVAL040[35:0] Input -
RSTVAL044[35:0] Input -
RSTVAL048[35:0] Input -
RSTVAL04C[35:0] Input -
RSTVAL050[35:0] Input -
RSTVAL054[35:0] Input -
RSTVAL058{35:0] Input -
RSTVAL05C[35:0] Input -
RSTVAL060[35:0] Input -
RSTVAL064[35:0] Input -
RSTVAL06C[35:0] Input -
RSTVAL070[35:0] Input -
RSTVAL080[35:0] Input -
RSTVAL200[35:0] Input -
RSTVAL204[35:0] Input -
RSTVAL208[35:0] Input -
RSTVAL20C[35:0] Input -
RSTVAL210[35:0] Input -
RSTVAL218[35:0] Input -
RSTVAL274[35:0] Input -
RSTVAL278[35:0] Input -
RSTVAL280[35:0] Input -
RSTVAL284[35:0] Input -
RSTVAL288[35:0] Input -
RSTVAL28C[35:0] Input -

Table 75. Signal descriptions for stand-alone version (ftaddr_sa)

Signal name Type Function Active

70 www.cobham.com/gaisler

1.13.2 GRLIB version

Table 75 shows the interface signals (VHDL ports) of the GRLIB version of the core.

Table 76. Signal descriptions for GRLIB version (ftaddr_gr)

Signal name Type Function Active
AHB_CLK Input AHB clock Rising
AHB_RSTN Input Reset input for AHB clock domain Low
AHBSI[nports-1:0] Input AMBA AHB signal records.

Port 0 signals are contained in ahbsi[0]/ahbso[0],
port 1 in ahbsi[1]/ahbso[1], and so on.
All ports are clocked by the same AHB clock but
are otherwise independent. The ports are not
required to be on the same AHB bus. The IRQ
line is driven on AHB port 0 only.

-
AHBSO[nports-1:0] Output -

AHB_CE[nports-1:0] Output EDAC corrected error signal for each port High
AHB_UE[nports-1:0] Output EDAC uncorrectable error signal for each port High
DYNSYNC Input Dynamic synchronization control signal, see sec-

tion 1.7.2. This is a pseudo-static signal that
should only change during reset.

-

DFI_CLK Input DFI interface clock Rising
DFI_RSTN Input Reset input for DFI clock domain Low
DFI_CS_N[ctrldup*numcs-1:0] Output DFI interface memory control signals. For-

warded to the memory devices by the PHY.
DFI_RESET_N is used for DDR3 only.
If ctrldup is set higher than one, multiple identi-
cal copies of the output signals are generated.

Low
DFI_BANK[ctrldup*3-1:0] Output -
DFI_ADDRESS[ctrldup*16-1:0] Output -
DFI_RAS_N[ctrldup-1:0] Output Low
DFI_CAS_N[ctrldup-1:0] Output Low
DFI_WE_N[ctrldup-1:0] Output Low
DFI_CKE[ctrldup*numcs-1:0] Outpu High
DFI_ODT[ctrldup*numcs-1:0] Output High
DFI_RESET_N[ctrldup*numcs-1:0] Output Low
DFI_WRDATA[2*ddrbits-1:0] Output DFI memory write interface.

All bits of DFI_WRDATA_EN are driven with
identical values.

-
DFI_WRDATA_EN[numrwen-1:0] Output High
DFI_WRDATA_MASK[ddrbits/4-1:0] Output -
DFI_RDDATA_EN[numrwen-1:0] Output DFI memory read interface.

All bits of DFI_RDDATA_EN are driven with
identical values. Only bit 0 of DFI_RD-
DATA_VALID is used.

High
DFI_RDDATA[2*ddrbits-1:0] Input -
DFI_RDDATA_VALID[numrwen-1:0] Input High

DFI_CTRLUPD_REQ Output DFI update interface High
DFI_CTRLUPD_ACK Input High
DFI_PHYUPD_REQ Input High
DFI_PHYUPD_TYPE[1:0] Input -
DFI_PHYUPD_ACK Output High
DFI_DATA_BYTE_DISABLE[ddrbits/8-1:0] Output DFI data byte disable signal High
DFI_DRAM_CLK_DISABLE Output DFI clock output disable signal High
DFI_INIT_COMPLETE Input DFI initialization complete signal from PHY High

71 www.cobham.com/gaisler

DFI_RDLVL_MODE[1:0] Input DFI read leveling (gate and eye training) inter-
face.

-
DFI_RDLVL_REQ[numrdlvlphy-1:0] Input High
DFI_RDLVL_EN[numrdlvlmc-1:0] Output High
DFI_RDLVL_GATE_MODE[1:0] Input -
DFI_RDLVL_GATE_REQ[numrdlvlphy-1:0] Input High
DFI_RDLVL_GATE_EN[numrdlvlmc-1:0] Output High
DFI_RDLVL_CS_N[numcs-1:0] Output Low
DFI_RDLVL_EDGE[numrdlvlmc-1:0] Output -
DFI_RDLVL_DELAY[(ddrbits/8)*rdblvlbits-
1:0]

Output -

DFI_RDLVL_GATE_DELAY[(ddrbits/
8)*rdglvlbits-1:0]

Output

DFI_RDLVL_LOAD[numrdlvlmc-1:0] Output High
DFI_RDLVL_RESP[ddrbits-1:0] Input
DFI_WRLVL_MODE[1:0] Input DFI write leveling interface -
DFI_WRLVL_REQ[numwrlvlphy-1:0] Input High
DFI_WRLVL_EN[numwrlvlmc-1:0] Output High
DFI_WRLVL_CS_N[numcs-1;0] Output Low
DFI_WRLVL_DELAY[(ddrbits/8)*rdblvl-
bits-1:0]

Output -

DFI_WRLVL_LOAD[numwrlvlmc-1:0] Output High
DFI_WRLVL_STROBE[numwrlvlmc-1:0] Output High
DFI_WRLVL_RESP[ddrbits-1:0] Input -
XDFI_TERM_EN Output Enable for local termination on DQ bus.

(PHY specific signal)
High

XDFI_RDERR[(ddrbits/8)-1:0] Input Byte lane error detection signal from PHY
PHY-specific signal, tie low if unused

High

XDFI_SOFTRST Output Soft reset signal to PHY (PHY-specific signal) High
XDFI_PHYCTRL[31:0] Outpu Generic PHY control register output -
XDFI_BL_RESETN[(ddrbits/8)-1:0] Output RESETN and CKE signals per byte lane, to use

instead of regular DFI signals when implement-
ing a memory system with reboot support (see
section 1.3.12)

Low
XDFI_BL_CKE[(ddrbits/8)-1:0] Output High

XDFI_BL_PDN[(ddrbits/8)-1:0] Output Output signal for power cycling control per byte
lane, only for use when implementing a memory
system with reboot support (see section 1.3.12)

Low

XDFI_CLK_ZERO Output Output signal for forcing clock outputs low, only
for use when implementing a memory system
with reboot support (see section 1.3.12)

High

AFI_DQS_BURST Output Additional control signal needed when interfac-
ing AFI PHY

High

AFI_WLAT[5:0] Input AFI write latency signal, only used when inter-
facing AFI PHY

-

Table 76. Signal descriptions for GRLIB version (ftaddr_gr)

Signal name Type Function Active

72 www.cobham.com/gaisler

1.14 Library dependencies

Tables 77 and 78 shows libraries used when instantiating the core (VHDL libraries).

Table 77. Library dependencies for instantiating stand-alone top level

Library Package Imported unit(s) Description
GAISLER FTADDR_SAPKG Component Component declaration for std-logic version

RSTVAL008[35:0] Input Reset values for configuration registers, used
only if dynrst generic is set. The name corre-
sponds to the offset in the register area of the
register.
Bits 31:0 are used as the reset value if dynrst is
set.
When bit 32 is set, and dynrst is set, this forces
the register permanently to the supplied reset
value and the corresponding register bits can be
optimized out by the synthesis.
Bit 35:33 are currently unused.

-
RSTVAL00C[35:0] Input -
RSTVAL010[35:0] Input -
RSTVAL014[35:0] Input -
RSTVAL018[35:0] Input -
RSTVAL01C[35:0] Input -
RSTVAL020[35:0] Input -
RSTVAL024[35:0] Input -
RSTVAL040[35:0] Input -
RSTVAL044[35:0] Input -
RSTVAL048[35:0] Input -
RSTVAL04C[35:0] Input -
RSTVAL050[35:0] Input -
RSTVAL054[35:0] Input -
RSTVAL058{35:0] Input -
RSTVAL05C[35:0] Input -
RSTVAL060[35:0] Input -
RSTVAL064[35:0] Input -
RSTVAL06C[35:0] Input -
RSTVAL070[35:0] Input -
RSTVAL080[35:0] Input -
RSTVAL200[35:0] Input -
RSTVAL204[35:0] Input -
RSTVAL208[35:0] Input -
RSTVAL20C[35:0] Input -
RSTVAL210[35:0] Input -
RSTVAL218[35:0] Input -
RSTVAL274[35:0] Input -
RSTVAL278[35:0] Input -
RSTVAL280[35:0] Input -
RSTVAL284[35:0] Input -
RSTVAL288[35:0] Input -
RSTVAL28C[35:0] Input -

Table 76. Signal descriptions for GRLIB version (ftaddr_gr)

Signal name Type Function Active

Table 78. Library dependencies for instantiating GRLIB top level

Library Package Imported unit(s) Description
GRLIB AMBA Signals Signal record definitions
GAISLER FTADDR_PKG Component, Types Component declaration for GRLIB version
TECHMAP GENCOMP Constants Constants for tech generic

73 www.cobham.com/gaisler

1.15 Component declaration

The component declaration for the stand-alone and GRLIB versions are provided below.
 component ftaddr_sa is
 generic (
 ahbbits : integer := 128;
 ddrbits : integer := 96;
 nports : integer := 1;
 nahbmst : integer := 16;
 numcs : integer := 1;
 ctrldup : integer := 1;
 csdup : integer := 1;
 numrwen : integer := 1;
 numrdlvlphy : integer := 1;
 numrdlvlmc : integer := 1;
 numwrlvlphy : integer := 1;
 numwrlvlmc : integer := 1;
 rdblvlbits : integer := 1;
 rdglvlbits : integer := 1;
 wrlvlbits : integer := 1;
 phyimpl : integer := 0;
 genphy_trden : integer := 98;
 genphy_twrlat : integer := 100;
 genphy_twrdata : integer := 0;
 dynrst : integer := 0;
 phyctrlbits : integer := 0;
 dffonly : integer := 0;
 simopts : integer := 0
);
 port (
 -- AMBA clock/reset
 ahb_clk : in std_ulogic;
 ahb_rstn : in std_ulogic;
 -- AMBA ports
 ahb_hsel : in std_logic_vector(nports-1 downto 0);
 ahb_hsel_reg : in std_logic_vector(nports-1 downto 0);
 ahb_haddr : in std_logic_vector(nports*32-1 downto 0);
 ahb_htrans : in std_logic_vector(nports*2-1 downto 0);
 ahb_hsize : in std_logic_vector(nports*3-1 downto 0);
 ahb_hburst : in std_logic_vector(nports*3-1 downto 0);
 ahb_hwrite : in std_logic_vector(nports-1 downto 0);
 ahb_hwdata : in std_logic_vector(nports*ahbbits-1 downto 0);
 ahb_hprot : in std_logic_vector(nports*4-1 downto 0);
 ahb_hmaster : in std_logic_vector(nports*4-1 downto 0);
 ahb_hmastlock : in std_logic_vector(nports-1 downto 0);
 ahb_hready_in : in std_logic_vector(nports-1 downto 0);
 ahb_hready : out std_logic_vector(nports-1 downto 0);
 ahb_hresp : out std_logic_vector(nports*2-1 downto 0);
 ahb_hrdata : out std_logic_vector(nports*ahbbits-1 downto 0);
 -- EDAC sideband signals
 ahb_ce : out std_logic_vector(nports-1 downto 0);
 ahb_ue : out std_logic_vector(nports-1 downto 0);
 -- Interrupt output
 irq_out : out std_ulogic;
 -- Sync configuration
 dynsync : in std_ulogic;
 -- DFI clock/reset
 dfi_clk : in std_ulogic;
 dfi_rstn : in std_ulogic;

74 www.cobham.com/gaisler

 -- DFI command interface
 dfi_cs_n : out std_logic_vector(csdup*numcs-1 downto 0);
 dfi_bank : out std_logic_vector(ctrldup*3-1 downto 0);
 dfi_address : out std_logic_vector(ctrldup*16-1 downto 0);
 dfi_ras_n : out std_logic_vector(ctrldup-1 downto 0);
 dfi_cas_n : out std_logic_vector(ctrldup-1 downto 0);
 dfi_we_n : out std_logic_vector(ctrldup-1 downto 0);
 dfi_cke : out std_logic_vector(csdup*numcs-1 downto 0);
 dfi_odt : out std_logic_vector(csdup*numcs-1 downto 0);
 dfi_reset_n : out std_logic_vector(csdup*numcs-1 downto 0);
 dfi_wrdata : out std_logic_vector(2*ddrbits-1 downto 0);
 dfi_wrdata_en : out std_logic_vector(numrwen-1 downto 0);
 dfi_wrdata_mask : out std_logic_vector(ddrbits/4-1 downto 0);
 dfi_rddata_en : out std_logic_vector(numrwen-1 downto 0);
 dfi_rddata : in std_logic_vector(2*ddrbits-1 downto 0);
 dfi_rddata_valid : in std_logic_vector(numrwen-1 downto 0);
 -- DFI update interface
 dfi_ctrlupd_req : out std_ulogic;
 dfi_ctrlupd_ack : in std_ulogic;
 dfi_phyupd_req : in std_ulogic;
 dfi_phyupd_type : in std_logic_vector(1 downto 0);
 dfi_phyupd_ack : out std_ulogic;
 -- DFI init/power-down singals
 dfi_data_byte_disable : out std_logic_vector(ddrbits/8-1 downto 0);
 dfi_dram_clk_disable : out std_logic_vector(csdup*numcs-1 downto 0);
 dfi_init_complete : in std_ulogic;
 -- DFI training/leveling interface
 dfi_rdlvl_mode : in std_logic_vector(1 downto 0);
 dfi_rdlvl_req : in std_logic_vector(numrdlvlphy-1 downto 0);
 dfi_rdlvl_en : out std_logic_vector(numrdlvlmc-1 downto 0);
 dfi_rdlvl_gate_mode : in std_logic_vector(1 downto 0);
 dfi_rdlvl_gate_req : in std_logic_vector(numrdlvlphy-1 downto 0);
 dfi_rdlvl_gate_en : out std_logic_vector(numrdlvlmc-1 downto 0);
 dfi_rdlvl_cs_n : out std_logic_vector(csdup*numcs-1 downto 0);
 dfi_rdlvl_edge : out std_logic_vector(numrdlvlmc-1 downto 0);
 dfi_rdlvl_delay : out std_logic_vector((ddrbits/8)*rdblvlbits-1 downto 0);
 dfi_rdlvl_gate_delay : out std_logic_vector((ddrbits/8)*rdglvlbits-1 downto 0);
 dfi_rdlvl_load : out std_logic_vector(numrdlvlmc-1 downto 0);
 dfi_rdlvl_resp : in std_logic_vector(ddrbits-1 downto 0);
 dfi_wrlvl_mode : in std_logic_vector(1 downto 0);
 dfi_wrlvl_req : in std_logic_vector(numwrlvlphy-1 downto 0);
 dfi_wrlvl_en : out std_logic_vector(numwrlvlmc-1 downto 0);
 dfi_wrlvl_cs_n : out std_logic_vector(csdup*numcs-1 downto 0);
 dfi_wrlvl_delay : out std_logic_vector((ddrbits/8)*wrlvlbits-1 downto 0);
 dfi_wrlvl_load : out std_logic_vector(numwrlvlmc-1 downto 0);
 dfi_wrlvl_strobe : out std_logic_vector(numwrlvlmc-1 downto 0);
 dfi_wrlvl_resp : in std_logic_vector(ddrbits-1 downto 0);
 -- PHY specific signals
 xdfi_term_en : out std_ulogic;
 xdfi_rderr : in std_logic_vector((ddrbits/8)-1 downto 0) := (others => ‘0’);
 xdfi_softrst : out std_ulogic;
 xdfi_phyctrl : out std_logic_vector(31 downto 0); -- Generic PHY control
register
 xdfi_bl_resetn : out std_logic_vector(ddrbits/8-1 downto 0);
 xdfi_bl_cke : out std_logic_vector(ddrbits/8-1 downto 0);
 xdfi_bl_pdn : out std_logic_vector(ddrbits/8-1 downto 0);
 xdfi_clk_zero : out std_ulogic;
 afi_dqs_burst : out std_ulogic;
 afi_wlat : in std_logic_vector(5 downto 0) := “000000”;
 -- Reset values
 rstval008 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval00C : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval010 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval014 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval018 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval01C : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval020 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval024 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval040 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval044 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval048 : in std_logic_vector(35 downto 0) := x”000000000”;

75 www.cobham.com/gaisler

 rstval04C : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval050 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval054 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval058 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval05C : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval060 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval064 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval06C : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval070 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval080 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval200 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval204 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval208 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval20C : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval210 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval218 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval274 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval278 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval280 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval284 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval288 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval28C : in std_logic_vector(35 downto 0) := x”000000000”
);
 end component;

 component ftaddr_gr is
 generic (
 hindex0 : integer := 0;
 hindex1 : integer := 0;
 hindex2 : integer := 0;
 hindex3 : integer := 0;
 haddr0 : integer := 0;
 hmask0 : integer := 0;
 haddr1 : integer := 0;
 hmask1 : integer := 0;
 haddr2 : integer := 0;
 hmask2 : integer := 0;
 haddr3 : integer := 0;
 hmask3 : integer := 0;
 ioaddr0 : integer := 16#000#;
 iomask0 : integer := 16#FFC#;
 ioaddr1 : integer := 16#000#;
 iomask1 : integer := 16#FFC#;
 ioaddr2 : integer := 16#000#;
 iomask2 : integer := 16#FFC#;
 ioaddr3 : integer := 16#000#;
 iomask3 : integer := 16#FFC#;
 hirq : integer := 0;
 tech : integer := inferred;
 ahbbits : integer := AHBDW;
 ddrbits : integer := 96;
 nports : integer := 1;
 nahbmst : integer := 16;
 numcs : integer := 1;
 ctrldup : integer := 1;
 csdup : integer := 1;
 numrwen : integer := 1;
 numrdlvlphy : integer := 1;
 numrdlvlmc : integer := 1;
 numwrlvlphy : integer := 1;
 numwrlvlmc : integer := 1;
 rdblvlbits : integer := 1;
 rdglvlbits : integer := 1;
 wrlvlbits : integer := 1;
 phyimpl : integer := 0;
 genphy_trden : integer := 98;
 genphy_twrlat : integer := 100;
 genphy_twrdata : integer := 0;
 fifoftmask : integer := 16#1F#;
 fifoinfmask : integer := 0;
 dynrst : integer := 0;

76 www.cobham.com/gaisler

 phyctrlbits : integer := 0
);
 port (
 -- AMBA clock/reset
 ahb_clk : in std_ulogic;
 ahb_rstn : in std_ulogic;
 -- AMBA ports
 ahbsi : in ahb_slv_in_vector_type(nports-1 downto 0);
 ahbso : out ahb_slv_out_vector_type(nports-1 downto 0);
 -- EDAC sideband signals
 ahb_ce : out std_logic_vector(nports-1 downto 0);
 ahb_ue : out std_logic_vector(nports-1 downto 0);
 -- Sync configuration
 dynsync : in std_ulogic;
 -- DFI clock/reset
 dfi_clk : in std_ulogic;
 dfi_rstn : in std_ulogic;
 -- DFI command interface
 dfi_cs_n : out std_logic_vector(csdup*numcs-1 downto 0);
 dfi_bank : out std_logic_vector(ctrldup*3-1 downto 0);
 dfi_address : out std_logic_vector(ctrldup*16-1 downto 0);
 dfi_ras_n : out std_logic_vector(ctrldup-1 downto 0);
 dfi_cas_n : out std_logic_vector(ctrldup-1 downto 0);
 dfi_we_n : out std_logic_vector(ctrldup-1 downto 0);
 dfi_cke : out std_logic_vector(csdup*numcs-1 downto 0);
 dfi_odt : out std_logic_vector(csdup*numcs-1 downto 0);
 dfi_reset_n : out std_logic_vector(csdup*numcs-1 downto 0);
 dfi_wrdata : out std_logic_vector(2*ddrbits-1 downto 0);
 dfi_wrdata_en : out std_logic_vector(numrwen-1 downto 0);
 dfi_wrdata_mask : out std_logic_vector(ddrbits/4-1 downto 0);
 dfi_rddata_en : out std_logic_vector(numrwen-1 downto 0);
 dfi_rddata : in std_logic_vector(2*ddrbits-1 downto 0);
 dfi_rddata_valid : in std_logic_vector(numrwen-1 downto 0);
 -- DFI update interface
 dfi_ctrlupd_req : out std_ulogic;
 dfi_ctrlupd_ack : in std_ulogic;
 dfi_phyupd_req : in std_ulogic;
 dfi_phyupd_type : in std_logic_vector(1 downto 0);
 dfi_phyupd_ack : out std_ulogic;
 -- DFI init/power-down signals
 dfi_data_byte_disable : out std_logic_vector(ddrbits/8-1 downto 0);
 dfi_dram_clk_disable : out std_logic_vector(csdup*numcs-1 downto 0);
 dfi_init_complete : in std_ulogic;
 -- DFI trainig/leveling interface
 dfi_rdlvl_mode : in std_logic_vector(1 downto 0);
 dfi_rdlvl_req : in std_logic_vector(numrdlvlphy-1 downto 0);
 dfi_rdlvl_en : out std_logic_vector(numrdlvlmc-1 downto 0);
 dfi_rdlvl_gate_mode : in std_logic_vector(1 downto 0);
 dfi_rdlvl_gate_req : in std_logic_vector(numrdlvlphy-1 downto 0);
 dfi_rdlvl_gate_en : out std_logic_vector(numrdlvlmc-1 downto 0);
 dfi_rdlvl_cs_n : out std_logic_vector(csdup*numcs-1 downto 0);
 dfi_rdlvl_edge : out std_logic_vector(numrdlvlmc-1 downto 0);
 dfi_rdlvl_delay : out std_logic_vector((ddrbits/8)*rdblvlbits-1 downto 0);
 dfi_rdlvl_gate_delay : out std_logic_vector((ddrbits/8)*rdglvlbits-1 downto 0);
 dfi_rdlvl_load : out std_logic_vector(numrdlvlmc-1 downto 0);
 dfi_rdlvl_resp : in std_logic_vector(ddrbits-1 downto 0);
 dfi_wrlvl_mode : in std_logic_vector(1 downto 0);
 dfi_wrlvl_req : in std_logic_vector(numwrlvlphy-1 downto 0);
 dfi_wrlvl_en : out std_logic_vector(numwrlvlmc-1 downto 0);
 dfi_wrlvl_cs_n : out std_logic_vector(csdup*numcs-1 downto 0);
 dfi_wrlvl_delay : out std_logic_vector((ddrbits/8)*wrlvlbits-1 downto 0);
 dfi_wrlvl_load : out std_logic_vector(numwrlvlmc-1 downto 0);
 dfi_wrlvl_strobe : out std_logic_vector(numwrlvlmc-1 downto 0);
 dfi_wrlvl_resp : in std_logic_vector(ddrbits-1 downto 0);
 -- PHY specific signals
 xdfi_term_en : out std_ulogic;
 xdfi_rderr : in std_logic_vector((ddrbits/8)-1 downto 0) := (others =>
‘0’);
 xdfi_softrst : out std_ulogic;
 xdfi_phyctrl : out std_logic_vector(31 downto 0); -- Generic PHY control
register

77 www.cobham.com/gaisler

 xdfi_bl_resetn : out std_logic_vector(ddrbits/8-1 downto 0);
 xdfi_bl_cke : out std_logic_vector(ddrbits/8-1 downto 0);
 xdfi_bl_pdn : out std_logic_vector(ddrbits/8-1 downto 0);
 xdfi_clk_zero : out std_ulogic;
 afi_dqs_burst : out std_ulogic;
 afi_wlat : in std_logic_vector(5 downto 0) := “000000”;
 -- Reset values
 rstval008 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval00C : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval010 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval014 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval018 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval01C : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval020 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval024 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval040 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval044 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval048 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval04C : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval050 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval054 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval058 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval05C : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval060 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval064 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval06C : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval070 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval080 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval200 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval204 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval208 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval20C : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval210 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval218 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval274 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval278 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval280 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval284 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval288 : in std_logic_vector(35 downto 0) := x”000000000”;
 rstval28C : in std_logic_vector(35 downto 0) := x”000000000”
);
 end component;

78 www.cobham.com/gaisler

1.16 Appendix A: Calibration for ISD65 PHY

1.16.1 Write Leveling

Write leveling is only used for DDR3 memories. Write leveling allows to compensate for the DQS/
CK skew caused by the fly-by topology of routing. DDR3 standard has a dedicated mode for write
leveling which simplifies the operation significantly.
Write leveling algorithm:
1. Write leveling is enabled by writing to MR1 register.
2. “dfi_wrlvl_en” is asserted to switch the PHY to write leveling mode.
3. Smallest delay value is loaded to “dfi_wrlvl_delay” for each byte lane. This value determines how
much the DQS and DQSN signals will be delayed that goes out from the PHY to the DDR memories.
4. dfi_wrlvl_store is asserted for one cycle and then a number of cycles determined by the PHY spec-
ification is waited to sample the dfi_wrlvl_response value for all the byte lanes.
5. The byte lanes in which a high response is received is considered to be done and the delay value for
those lanes are fixed.
6. As soon as not all the byte lanes are done or delay value has not reached to the maximum available
value, the delay is incremented by one and the steps from 4. is repeated. If all the byte lanes are done
or maximum delay value is reached continue to the next step.
7. If one or more byte lanes is not done after the maximum delay value is reached, those byte lanes are
considered to be erroneous.
8. “dfi_wrlvl_en” is deasserted to prepare the PHY to regular operation mode.
9. Write leveling is disabled by writing to MR1 register.
Write leveling operation is done in parallel for all the byte lanes requested by the DDR controller.
Following waveforms illustrates a case in which before write leveling CLK is delayed compared to
DQS arriving to the inputs of the DDR memory.
Before write leveling:

After write leveling:

1.16.2 Incremental Write Leveling

Incremental write leveling is only used for DDR3 memories and it is optional. It can allow more safe
operation if there is a big variation in the delays caused by supply voltage, temperature etc. since it is
done periodically, the algorithm is designed to take as short time as possible. Note that the calibration
interval is under user control, and it is the user’s responsibility to ensure the incremental calibration is
run often enough to avoid memory interface malfunction.
Algorithm:
1. Write leveling is enabled by writing to MR1 register.
2. “dfi_wrlvl_en” is asserted to switch the PHY to write leveling mode.

79 www.cobham.com/gaisler

3. “dfi_wrlvl_delay” is incremented by one and a sample is taken (step 4 in Write Leveling). After
that “dfi_wrlvl_delay” is decremented by one and another sample is taken. This way if no change is
needed in the delay value, calibration finite state machine can directly finish without updating the
dfi_wrlvl_delay value again.
4. Action is determined depending on the values sampled in the previous step.
For each byte lane:
*dfi_wrlvl_delay-1 = ‘0’ & dfi_wrlvl_delay = ‘1’ --> No action is needed.
*dfi_wrlvl_delay-1 = ‘1’ & dfi_wrlvl_delay = ‘1’ --> dfi_wrlvl_delay value needs to be decremented
by one.
*dfi_wrlvl_delay-1 = ‘0’ & dfi_wrlvl_delay = ‘0’ --> dfi_wrlvl_delay value needs to be incremented
by one.
*dfi_wrlvl_delay-1 = ‘1’ & dfi_wrlvl_delay = ‘0’ --> No action is needed. Theoretically, this case
would be expected to never happen, but in practice it might happen due to random timing jitter when
taking the two samples if the write strobe is very close the transition region, hence already very close
to desired point.
5. If none of the byte lanes requires any action go to the next step directly. If any of the dfi_wrlvl_de-
lay value is changed than update the delay values and go to next step.
6. “dfi_wrlvl_en” is deasserted to prepare the PHY to regular operation mode.
7. Write leveling is disabled by writing to MR1 register.
Incremental write leveling operation is done in parallel for all the byte lanes requested by the DDR
controller.

1.16.3 Read Leveling

Read leveling consist of Gate Calibration and Data-Eye Calibration. Both of them are used with
DDR2 and DDR3 memories, and both operations are important for read operations to work correctly.

1.16.4 Gate Calibration

Gate calibration determines the start point when the DQS/DQSN signals arriving from DDR memo-
ries are treated as valid during read operation. This prevents a value to be sampled when the data bus
is in Hi-Z mode. It is most desirable to identify the start point somewhere close to the middle of pre-
amble window of DQS/DQSN during gate calibration. If gate calibration goes wrong and sets the start
point after the first rising edge of DQS then the read data sequence will be wrong.
PHY provides two different delay types for gate calibration. One is called coarse delay value in which
every step corresponds to a quarter of the clock cycle. The second one is called fine delay value in
which every step corresponds to ~40-80 ps delay value (depending on the manufacturing, tempera-
ture, voltage etc.). Both of the delay types are used during gate calibration in order to have a reliable
operation.
Gate calibration algorithm:
1. Issue an open row command for further read commands in the calibration for. For DDR3 memories
enable dataflow from MPR by writing to MR3 register.
2. “dfi_rdlvl_gate_en” signal is asserted to prepare the PHY for gate leveling operation.
3. Coarse delay value is set to four clock cycles for all the byte lanes. When the delay value is mini-
mum there is a high chance of sampling a Hi-Z value hence sampling start somewhere in the middle
of read operation and goes backwards to find the preamble.
4. Issue two read commands back-to-back. Since the sampling is done somewhere in the middle, two
read commands are issued back-to-back in order not fall a point after the read operation ends.

80 www.cobham.com/gaisler

5. Read back the responses. Response is the value of the DQS signal during the rising edge of gate
enable signal.
5a. If a response is zero increment the coarse delay value by one and go back to step 4.
5b. If a response is one, decrement the coarse delay value by one and go forward to step 6.
5c. If the response is zero even though the smallest coarse delay value is reached mark the byte lane as
erroneous and assume the operation for that byte lane is complete and go to step 9.
6. Issue two read commands back-to-back.
6a. If a response is zero, try to find a one response with incrementing the fine delay. Increment fine
delay by two. Go to step 7.
6b. If a response is one, decrement coarse delay value by one and go to step 6.
7. Issue two read commands back-to-back.
7.a. If a response is one, the algorithm can proceed next step to determine the beginning of the pream-
ble. Since we are already at the 50% of the preamble the coarse delay is reduced by 3 so that the fol-
lowing samples are always taken at the 25% of the preamble. This reduces the risk of sampling the
edge of the DQS signal which can give erroneous results. After coarse delay is reduced by 3 go to step
8.
7.b If a response is zero, increment the fine grain delay by 2 and go back to step 7.
8. Issue two read commands back-to-back.
8.a If a response is zero that means preamble is found. At this point coarse delay is incremented by 3
to set the final gate enable to 50%. The reason to increment by 3 is that, after dfi_rldlv_gate_en signal
is deasserted ISD PHY decrements coarse delay by two. So that increment by three actually corre-
sponds to increment by one. Go to step 9.
8.b If a response is one, decrement coarse delay value by 4 (full cycle) and repeat step 8.
9. Wait until all the byte lanes are complete. Deassert “dfi_rdlvl_gate_en” to prepare PHY for regular
operation. Close the open row..
Gate calibration is done in parallel for all the byte lanes requested by the DDR controller.
Following waveforms illustrates a case in which before gate calibration gate_en is enabled when DQS
is in Hi-Z mode. After calibration gate_en is enabled approximately at the middle of preamble win-
dow which allows a correct read operation.

1.16.5 Incremental Gate Calibration

Incremental gate calibration can be used for both DDR2 and DDR3 and it is optional. It can allow
more safe operation if there is a big variation in the delays caused by supply voltage, temperature etc.
since it is done periodically, the algorithm is designed to take as short time as possible. Note that the
calibration interval is under user control, and it is the user’s responsibility to determine if incremental
calibration is needed and ensure the incremental calibration is run often enough to avoid memory
interface malfunction.
This algorithm is exactly same as the regular gate calibration described in the previous section. But
the coarse delay value starts from the delay value determined by the initial gate calibration. This way
the algorithm converges much faster compared to the initial training.

81 www.cobham.com/gaisler

1.16.6 Data-Eye Calibration

The edges of default DQS signal coming out of the DDR memories can not be directly used to sample
the DQ because the actual data is available in a window which resides in between the rising and fall-
ing edges of the DQS signal and the data is undefined for a certain period after and before each edge
of the DQS signal. The purpose of data-eye operation is to shift DQS signal a quarter cycle in order to
align the edges of DQS to the middle of data window.
A specific data pattern is written to a part of the DDR controller in order for algorithm to run cor-
rectly. Initial data-eye calibration is done for all the available byte lanes and since the DDR controller
is not accessed yet there is no problem of data corruption. During SEFI handling an initial date-eye
calibration can be optionally enabled while trying to recover from SEFI. In this case the data-eye cal-
ibration is done only for the byte that have received SEFI. If the recovery goes successful the section
which is overwritten on that byte lane is recovered during scrubbing.
Data-eye calibration is done per byte-lane in which all the bits in a byte lane is calibrated in parallel.
Once a byte-lane is finished next byte-lane is calibrated. The reason not all byte lanes are calibrated in
parallel is to reduce the number of flip-flops.
Data-eye calibration algorithm:
1. Open a row and write access pattern of zeros and ones which would fit to a one full read burst oper-
ation.
2. Assert “dfi_rdlvl_en” signal to prepare the PHY for data-eye calibration operation.
3. Set the value of “dfi_rdlvl_delay” to zero for each bit in the byte-lane.
4. Issue a read command to sample DQ output with the first falling edge of DQS.
5a. If the response is zero set the temporary delay as the current dfi_rdlvl_delay value, after that incre-
ment dif_rdlvl_delay value and go to step 6.
5b. If the response is one increment the dfi_rdlvl_delay value is one go to step 4.
6. Issue a read command.
7. Increment the dfi_rdlvl_delay value and go back to step 6 continuously and collect the responses in
a shift register. If at any point a one is sampled go back to state 4. If all the shift register is filled with
zeros that means we hit a valid data window. The temporary delay value is the minimum delay point
(rdlvl_delay_min_value). Increment dfi_rdlvl_delay value by one and go to step 8.
8. Issue a read command.
9a. If a one is sampled that means we reach to the end of the current valid data window. This value is
considered as maximum delay value (rdlvl_delay_value_max). In order to align DQS in the middle of
DQ window calculate the final delay as (rdlvl_delay_value_max + rdlvl_delay_min_value)/2. Set this
delay value as the final delay value and go to step 10.
9b. If a zero is sampled go to step 8.
10. If all the bits in the byte-lane is calibrated switch to the next byte-lane and go to step 3. If all the
byte-lanes are calibrated then the entire data-eye calibration operation is finished.
11. Deassert the “dfi_rdlvl_en” signal in order to PHY to return regular operation mode. For DDR2
memories close the open row. For DDR3 memories disabel data flow from MPR mode by writing to
MR3 register.
Following waveforms illustrates a case in which before data-eye calibration DQS edges either sam-
ples Hi-Z or wrong data. After the data-eye calibration DQS edges are samples the middle of correct
data instance.
Before data-eye calibration:

82 www.cobham.com/gaisler

After data-eye calibration:

1.16.7 Incremental Data-Eye Calibration

Incremental data-eye calibration is optional and can allow more safe operation if there is a big varia-
tion in the delayed caused by supply voltage, temperature etc. Note that the calibration interval is
under user control, and it is the user’s responsibility to determine if incremental calibration is needed
and ensure the incremental calibration is run often enough to avoid memory interface malfunction.
Incremental data-eye calibration can be done to DDR3 memories using MPR mode without any data
corruption. But DDR2 memories require part of the memory to be overwritten (AHB address 0x0 -
0x40), hence the application must not make use of this address range if incremental data-eye calibra-
tion is done with DDR2 memory.
MPR mode in DDR3 outputs a predefined data pattern in one of the bits. This bit is used for incremen-
tal calibration and change in this bit is applied to all the remaining bits in the byte lane assuming the
drift in the bits of the same byte lane has a high correlation. The position of the bit in which pre-
defined output is driven is programmable through calibration registers, this allows to use MPR mode
for all types of DDR3 memories irrespective from the connection of the bits of DDR device to the
DDR controller. To simplify the hardware the calibration is also done for a single bit on a byte lane
and change is propagated to other bits if the incremental training is done for DDR2 memories also. It
is also possible to do DDR3 incremental calibration without MPR mode like the DDR2 but this is not
recommended since a memory area will be overwritten as indicated in the previous paragraph.
Since the algorithm is based on a single bit from each byte lane the incremental calibration algorithm
is done in parallel for all the byte lanes.
Algorithm:
1. If DDR3 with MPR mode is selected, enable dataflow from MPR by writing to MR3 register. Make
sure MPR bit position is set correctly in the calibration module registers. If DDR2 is used or MPR
mode is disabled open a row and write the predefined pattern as the regular data-eye calibration.
2. Assert “dfi_rdlvl_en” signal to prepare the PHY for data-eye calibration operation.
3. Save the “dfi_rdlvl_delay” value for the data-flow bits in the byte-lane and set the “dfi_rdlvl_de-
lay” value to rdlvl_delay_value_max which was determined in the initial data-eye training. Issue a
read command to sample DQ.
4. Set “dfi_rdlvl_delay” value to rdlvl_delay_value-max-1. Issue a read command to sample DQ.
5. Action is determined depending on the values sampled in steps 3 and 4.
For each byte lane:

83 www.cobham.com/gaisler

rdlvl_delay_value_max-1 = ‘0’ & rdlvl_delay_value_max = ‘1’ --> No action is needed.
rdlvl_delay_value_max-1 = ‘1’ & rdlvl_delay_value_max = ‘1’ --> “dfi_rdlvl_delay” value needs to
be decremented by one. This is done for all the bits in the specific byte lane. In addition “rdlvl_de-
lay_value_max” is also decremented by one to prepare for the next instance of incremental data-eye
training.
rdlvl_delay_value_max-1 = ‘0’ & rdlvl_delay_value_max = ‘0’ --> “dfi_rdlvl_delay” value needs to
be incremented by one. This is done for all the bits in the specific byte lane. In addition “rdlvl_de-
lay_value_max” is also incremented by one to prepare for the next instance of incremental data-eye
training.
rdlvl_delay_value_max-1 = ‘1’ & rdlvl_delay_value_max = ‘0’ --> No action is needed. Theoreti-
cally, this case would be expected to never happen, but in practice it might happen due to random tim-
ing jitter when taking the two samples if the write strobe is very close the transition region, hence
already very close to desired point.
6. Update “dfi_rdlvl_delay” on the PHY according to the results from previous step.
7. Deassert the “dfi_rdlvl_en” signal in order to PHY to return regular operation mode. Disable data
flow from MPR mode if the calibration is done with MPR mode. Otherwise close the open row.

��������	
�
��
������
��������

�������	���
���������
��
������
�������
��
��������
	�
��
������	�
���
���������
��������
��

������������	�
��
�������
��
������
�������
���
�	�
����
��
���
���
�����������	�
��
��	��	�
��
�	���

����	�
��
	����
���	���
�����
���
�����	
����
�	�
����
 �
�������
��
����	��
��
�������	���
��

�	�������
�����
���
��	��	
��
��	��	
����	�
��
������
��������

!��
�������	���
��
��������
��
���
∀����
��
��
������	�
	��	
�	
��
������	
��
���	����
���
���
��������

���	���
�������	
���
�#�����	�

�
�
�
�
��
��
�	

�
�

��
�
�
�
��
��
��

	Introduction
	Scope of the Document
	Structure of document

	1 FTADDR - Autonomous DDR2/DDR3 Controller with EDAC
	1.1 Overview
	1.2 Operation
	1.2.1 Memory bank configurations
	1.2.2 Configurable timing parameters
	1.2.3 Registered SDRAM
	1.2.4 On-die termination management
	1.2.5 Setup
	1.2.6 Memory device initialization and management
	1.2.7 Data access
	1.2.8 Logical address to memory address mapping

	1.3 Back-end functional description
	1.3.1 Controller back-end states
	1.3.2 Data transfers
	1.3.3 Service intervals
	1.3.4 Refresh
	1.3.5 ZQ calibration
	1.3.6 Periodic mode register reprogramming
	1.3.7 Delay training
	1.3.8 User specified commands
	1.3.9 Diagnostic access
	1.3.10 Manual mode
	1.3.11 PHY-specific support
	1.3.12 Memory reboot support
	1.3.13 Internal assertion error flags

	1.4 Front-end functional description
	1.4.1 AHB slave ports
	1.4.2 Response patterns
	1.4.3 Memory read and write
	1.4.4 Write buffering
	1.4.5 Read pre-fetching
	1.4.6 Configuration area
	1.4.7 Multi-ported configuration

	1.5 Error detection and correction features
	1.5.1 Overview
	1.5.2 Correctable error handling
	1.5.3 Uncorrectable error handling
	1.5.4 EDAC details
	1.5.5 Internal self-checking
	1.5.6 Diagnostic interface
	1.5.7 Initialization
	1.5.8 Scrubbing
	1.5.9 Correctable error counting
	1.5.10 Byte lane error counters
	1.5.11 SEFI handling
	1.5.12 PHY-based SEFI detection
	1.5.13 Address error counters

	1.6 Front-end to back-end interface implementation
	1.6.1 Command FIFO format
	1.6.2 Commands
	1.6.3 Response FIFO format
	1.6.4 Read-data FIFO format
	1.6.5 Write-data FIFO format
	1.6.6 Read-modify-write accesses
	1.6.7 Prefetching
	1.6.8 Register interface

	1.7 Implementation
	1.7.1 Code structure
	1.7.2 Clocking and reset
	1.7.3 Buffer memories, stand-alone version
	1.7.4 Guard gates, stand-alone version
	1.7.5 EDAC pipelining
	1.7.6 Clock gating
	1.7.7 Performance and area
	1.7.8 Porting to other technology, stand-alone version
	1.7.9 Porting to new technology, GRLIB version

	1.8 PHY specific implementation characteristics
	1.8.1 Generic DFI implementation
	1.8.2 ISD65 PHY specific implementation
	1.8.3 Altera UniPhy implementation

	1.9 DFI Spec Sheet
	1.10 Registers
	1.10.1 Feature set register
	1.10.2 Backend status register
	1.10.3 Memory configuration register 1
	1.10.4 Memory configuration register 2
	1.10.5 Memory configuration register 3
	1.10.6 Memory configuration register 4
	1.10.7 Service configuration register 1
	1.10.8 Service configuration register 2
	1.10.9 PHY timing register 1
	1.10.10 PHY timing register 2
	1.10.11 Diagnostic access control register 1
	1.10.12 Diagnostic access control register 2
	1.10.13 Diagnostic access status register
	1.10.14 Diagnostic checkbit register
	1.10.15 Diagnostic data register 1
	1.10.16 Diagnostic data register 2
	1.10.17 ODT configuration register for CS #N
	1.10.18 ODT external timing register
	1.10.19 ODT internal timing register
	1.10.20 Command register
	1.10.21 Sleep mode configuration register
	1.10.22 EDAC configuration register
	1.10.23 Service time counter register
	1.10.24 PHY indirect address register
	1.10.25 PHY indirect data register
	1.10.26 PHY generic control register
	1.10.27 Training time counter register
	1.10.28 Back-end FIFO error counter register
	1.10.29 AHB address decode register
	1.10.30 AHB access configuration register
	1.10.31 Prefetch configuration register
	1.10.32 Scrubber configuration register 1
	1.10.33 Scrubber configuration register 2
	1.10.34 IRQ pending register
	1.10.35 IRQ enable register
	1.10.36 Scrubber UE register
	1.10.37 Scrubber CE byte lane counter register 1,2,3
	1.10.38 Scrubber CE byte lane counter register 4
	1.10.39 Scrubber CE address counter register 1
	1.10.40 Scrubber CE address counter register 2,3
	1.10.41 Scrubber CE address counter register 4
	1.10.42 Access CE/UE location register, port 0,1,2,3
	1.10.43 Prefetch status register, port N
	1.10.44 Prefetch bank status register
	1.10.45 Scrubber start address register
	1.10.46 Scrubber end address register
	1.10.47 Frontend FIFO error counter register
	1.10.48 Initialization pattern register 1,2,3,4
	1.10.49 Scrubber position register, port N
	1.10.50 ISD65 PHY specific registers

	1.11 Vendor and device identifiers
	1.12 Configuration options
	1.12.1 Configuration options for stand-alone version
	1.12.2 Configuration options for GRLIB version

	1.13 Signal descriptions
	1.13.1 Stand-alone version
	1.13.2 GRLIB version

	1.14 Library dependencies
	1.15 Component declaration
	1.16 Appendix A: Calibration for ISD65 PHY
	1.16.1 Write Leveling
	1.16.2 Incremental Write Leveling
	1.16.3 Read Leveling
	1.16.4 Gate Calibration
	1.16.5 Incremental Gate Calibration
	1.16.6 Data-Eye Calibration
	1.16.7 Incremental Data-Eye Calibration

