

the Interconnect Processing Unit (IPU)

Riccardo Locatelli

ST France, AST NoC architecture & design

Network on Chip round table

European Space Agency, ESTEC
Noordwijk 17/18 September 2009

Agenda

- SoC interconnect requirements vision
- Beyond NoC, IPU
- Spidergon STNoC fundamentals:
 - Topology, Routing, Flow control
 - Packet format, Services
- Spidergon STNoC IPU EDA
- Demonstrators

Multicore SoC architecture vision

towards....

Open Configurable Heterogeneous Multicore Platforms

Multicore SoC architecture vision

ON-CHIP COMMUNICATION CENTRIC PLATFORM

On-chip communication centric platform: our vision

- Physical-aware interconnect in 45, 32 nm
 - higher distribution, deeper hierarchy, regularity
 - redundancy & fault tolerance
- Performance scalability on top of a distribution infrastructure
 - Higher aggregate band management
- Shift towards programmable on-chip communication platform built on top of a simple network
- me hardware platform through s set
 - Expose system hardware to system software
- Integration platform
 - Reuse, EDA, productivity (from architecture to backend)

Beyond the NoC: the IPU

The Interconnect Processing Unit (IPU) is an on-chip communication network with hardware and software components

- which implement key functions of different SoC programming models through a set of <u>communication</u> and <u>synchronization</u> primitives
- and provide <u>low-level platform services</u> to enable advanced features in modern heterogeneous applications on a single die.

Spidergon STNoC IPU

Spidergon STNoC is a hardware/software set of Services on top of a distributed on-chip network

Application

Transport

Network

Data Link

Physical

Services Set

Network Interface

Router
Network Plug Switch

Link

Main hardware building blocks are:

Link, Router, Network Plug Switch, Network Interface

Spidergon STNoC IPU

- IPU Services are implemented in hardware and/or software
 - Communication Primitives
 - Low level Platform Services

STMicroelectronics C

Spidergon STNoC IPU fundamentals Topology & routing Flow control Packet format

Topology trade-off

Challenge is trade-off network benefits of regular topology vs. heterogeneous, irregular Multicore SoC architectures

from INTEL

Spidergon STNoC family of topologies

Spidergon STNoC hierarchy & aggregation

SoC interconnect example

Spidergon STNoC topologies

Match application-specific topological requirements of SoCs

Hierarchical interconnect

Symmetric Spidergon (point2point in streaming)

Spidergon STNoC routing centric approach

- Spidergon STNoC is based on routing
- No address decoding at each Node, but just once at the injection

Why Routing?

- To decouple address map / IP socket from the network
 - Fast, simple and protocol agnostic router
 - Post-silicon software re-programmability

Spidergon STNoC routing

- Several deterministic deadlock free routing schemes
- Two-steps implementation:
 - (i) @ packet generation (programmable)
 - (ii) on the path (zero tables very simple)

Spidergon STNoC flow control

- Forwarding scheme is wormhole
 - Latency gain and smaller flit level buffers
- Link level flow control is based on credits
 - Most efficient to support virtual channels

- End2end flow control based on virtual connection mechanism
 - Buffer efficient in streaming/message passing

Spidergon STNoC layers

WIRES

FLIT

PACKET

IP Transactions

Spidergon STNoC IPU fundamentals Services

Spidergon STNoC platform services

Spidergon STNoC acts as a programmable distributed hardware/software component that offers a set of services to design advanced application features

Topology virtualization, QoS, Power management, Security support, Diagnostic and monitoring,

Spidergon STNoC platform services: SW view

Spidergon STNoC SW stack

- Export a SW view (API) of the HW interconnect behavior to program the multi-core SoC architecture
- Libraries developed to ease programming and to take advantage of built-in NoC services
- OS network awareness
- A stack portable to different OS (but the API stays put)

HW SoC can react to different application conditions to improve product user experience

Spidergon STNoC IPU EDA

Spidergon STNoC EDA

I-NoC is an integrated interactive EDA framework for Networkon-Chip based platforms from conception to implementation

Spidergon STNoC Demonstrators: examples

Configurable Multicore test-chip: samples out

Multicore based on reconfigurable logic and Spidergon STNoC IPU

Spidergon STNoC IPU with ARM11 SMP

Emulate an application processor

Conclusions

beyond NoC.... the IPU

Spidergon STNoC IPU is an innovative technology for next generation Multicore SoCs

For more info please refer to

Spidergon STNOC book

ISBN: 9781420044713

Publication Date: September 2008

thanks

riccardo.locatelli@st.com