Networks on Chip (NOC)

Ran Ginosar

Prof. EE & CS
Technion-Israel Institute of Technology
ran@ee.technion.ac.il
www.ee.technion.ac.il/~ran

CEO
Ramon Chips, Ltd.
ran@ramon-chips.com

Acknowledgement

• Large research group at the Technion
 – Israel Cidon (Networking)
 – Ran Ginosar (VLSI)
 – Idit Keidar (Distributed Systems)
 – Isaac Kesslassy (Networking)
 – Avinoam Kolodny (VLSI)
 – Uri Weiser (Architecture)

• Past and present graduate students
 – Evgeny Bolotin, Roman Gindin, Reuven Dobkin, Zvika Guz, Ran Manevich, Arkadiy Morgenshtein, Zigi Walter, Asaf Baron, Dmitry Vainbrand

• Support by companies and funding agencies
 – Intel, Freescale, CEVA, Zoran, Israel government, EU FP7, USA SRC

• Large international research community since ~2000
 – Lots of literature

• Several companies making + using NoC
Buses are becoming spaghetti
The NoC Paradigm Shift

- Architectural paradigm shift
 - Replace the spaghetti by a *customized* network
- Usage paradigm shift
 - Pack everything in packets
- Organizational paradigm shift
 - Confiscate communications from logic designers
 - Move it to physical design
Organizational Paradigm Shift

System architecture

Chip architecture

Logic design (RTL – VHDL)

Spec

Netlist

Physical design (layout)

GDS-II

Fab

Buses: Designed in VHDL By architects and logic designers

NOC: Part of physical design: HARD IP-cores Global components

Driven mostly at architecture level

Interfaces specified at logic design level

Clocks

Power

GND

5
How is it designed?

• 3-way collaboration: Architects, logic designers, backend
• Requires novel special CAD!
Why go there?

- Efficient sharing of wires
- Lower area / lower power / faster operation
- Shorter design time, lower design effort
- Scalability
- Enable using custom circuits for comm
NoC is already here!

• Companies use (try) it
 – Freescale, NXP, STM, Infineon, Intel, ...

• Companies sell it
 – Sonics (USA), Arteris (France), Silistix (UK), ...

• Annual IEEE Conference
 – NOSC 2007: Princeton, USA
 – NOCS 2008: Newcastle, UK
 – NOCS 2009: San Diego, USA
 – NOCS 2010: Grenoble, France
 – NOCS 2011: Pittsburgh, USA
What’s in the NoC?

Packet stands in line, contends for output

OR:
Time slots allocated,
Circuits are switched,
And packets are pre-scheduled
What flows in the NoC?

- Basic unit exchanged by end-points is the PACKET
- Packets broken into many FLITs
 - "flow control unit"
 - Typically # bits = # wires in each link (variations)
 - Typically contains some ID bits, needed by each switch along the path:
 - Head / body / tail
 - VC #
 - SL #
- FLITs typically sent in a sequence, making a "worm" going through wormhole.
- Unlike live worms, FLITs of different packets may interleave on same link
 - Routers know who’s who
FLIT interleaving

IP1

IP2

IP3
Merging of disciplines

- Data Networking
- SOC / CMP Architecture
- VLSI

\(\Rightarrow\) confusion of terminology
NoC vs. Off-chip Networks

<table>
<thead>
<tr>
<th>NoC</th>
<th>Off-Chip Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Main costs power & area</td>
<td>• Power and area negligible</td>
</tr>
<tr>
<td>• Wires are relatively cheap</td>
<td>• Cost is in the links</td>
</tr>
<tr>
<td>• Prefer simple hardware</td>
<td>• Uses complex software</td>
</tr>
<tr>
<td>• Latency is critical</td>
<td>• Latency is tolerable</td>
</tr>
<tr>
<td>• Traffic may be known a-priori</td>
<td>• Traffic/applications unknown</td>
</tr>
<tr>
<td>• Design time specialization</td>
<td>• Changes at runtime</td>
</tr>
<tr>
<td>• Custom NoCs are possible</td>
<td>• Adherence to standards</td>
</tr>
<tr>
<td>• No faults, no changes</td>
<td>• Faults and changes</td>
</tr>
</tbody>
</table>
Simplest NoC router: Single level

- INPUT PORT SL1
- OUTPUT PORT SL1
- INPUT PORT SL1
- INPUT PORT SL1
- OUTPUT PORT SL1
- OUTPUT PORT SL1

BUFFERS ! Very expensive on chip
Software ? Very expensive on chip
Virtual Channels (VC): Multiple same-priority levels

Both VC flits traverse the SAME wires

Arbiter
Expensive on chip
Service Levels (a.k.a. VC....): Multiple priority levels

Imagine: Both VC and SL (two dimensions)
Some packets delayed longer than others
- Due to blocking

Guaranteed service NoC can eliminate the uncertainty
Average delay depends on load

Fully loaded networks crash! \(\rightarrow \) Plan for <50%
Quality-of-Service in NoC

- Multiple priority (service) levels
 - Define latency / throughput
 - Example:
 - Signaling
 - Real Time Stream
 - Read-Write
 - DMA Block Transfer
 - Preemptive
- **Best Effort** performance
 - E.g. 0.01% arrive later than required

SoC with NoC

- Each color is a separate clock domain
SoC with NoC

- What clock for the interconnect?
 - Fastest?
 - Opportunistic?
 - None?
The case for Async NoC and hard IP cores

- NOCs are for large SOCs
- Large SOCs = multiple clock domains
 → NOCs in large SOCs should be asynchronous
- Two complementary research areas:
 - Asynchronous routers
 • simplify design, low power
 - Asynchronous interconnect
 • high bandwidth, low power
- Problem: need special CAD, special methodology
 - Solutions:
 • deliver and use as “configurable hard IP core”
 • use only at physical design phase
 • deliver as predesigned infrastructure (FPGA, SOPC)
NoC: Three Levels

• Circuits
 – Wires, Buffers, Routers, NI

• Network
 – Topology, routing, flow-control

• Architecture
 – Everything is packets
 – Traffic must be characterized
 – NoC can extend to other chips
Circuit Issues

• Power challenge
 – Possible power sorting: Modules > NI > Switching > buffers > wires
 – Network interface (NI)
 • Buffer, request and allocate, convert, synchronize
 – Switches: X-bar or mux, arbitrated or pre-configured
 – Buffers: Enabled SRAM vs. FF
 – Wires: Parallel vs. serial, low voltage, fast wires

• Area challenge (a.k.a. leakage power)

• Latency challenge

• Design challenge
 – These circuits are not in your typical library!

• EDA challenge

• Who is the user?
 – Logic design vs. back-end
 • Not fit for simple HDL synthesis. Needs customized circuits
Networking Issues

• Topology: Regular mesh or custom?
 – ASIC are irregular

• Topology: Flat or hierarchical?
Networking Issues (cont.)

• Topology: Low or high radix?
 – Higher radix nets provide fewer hops (lower dynamic power)
 – But use more wires and more drivers / receivers (higher static power)

• How many buffers?
 – They are expensive (dynamic and static power)
Networking Issues (cont.)

• Guaranteed Service or Best Effort?
 – GS easy to verify performance
 – GS employs no buffers (only muxes): faster, lower power
 – But GS good only for precise traffic patterns
 – Philips (NXP) combined GS and BE

• Routing: Flexible or simple?
 – Flexible routing bypasses faults and congestions
 – Multiple routes may require re-ordering (expensive)
 – Fixed, simple single-path routing saves energy and area

• Multiple priorities and virtual channels
 – Effective but cost buffers
One size does not fit all!

- Even within each class several NOCS may be needed

I. Cidon and K. Goosses, in “Networks on Chips”, G. De Micheli and L. Benini, Morgan Kaufmann, 2006
NoC for CMP / Many-core chips

• Support known traffic patterns
 – CPUs to Shared Cache
 – Cache to external memory
 – Special I/O traffic: Graphic, wireless / wired comm, ??

• Support unexpected traffic patterns

• Provide new services
 – Provide cache coherency?
 – Manage the shared cache?
 – Schedule tasks / processes / threads?
 – Support OS?
 – Support other memory models?
 • More distributed? More tightly coupled?
 – Manage I/O?

• One NoC may not be enough...
Other Dimensions

- ASIC vs FPGA
 - In FPGA, NoC by vendor or user?
- ASYNC vs SYNC
- One chip vs Multiple chips
 - 3D, multi-chip systems
- HW vs SW
- Fixed vs Reconfigurable SoC/NoC
NoC for Testing SoC

• Certain test methods seek repeatable cycle-accurate patterns on chip I/O pins

• But systems are not cycle-accurate
 – Multiple clock domains, synchronizers, statistical behavior

• NoC facilitate cycle-accurate testing of each component inside the SoC
 – Enabling controllability and observability on module pins
 • Instead of chip pins

• Can be extended to space
 – Decomposed testing and b-scan in mission
 – Useful together with reconfiguration
Beware the Net!

- **Adopting just any off-chip net feature to NoC may be a mistake**
 - You can create an elegant regular topology
 - But ASICs are often irregular
 - You can create a non-blocking network
 - But hot spots can block networks of infinite capacity
 - You can guarantee service (it’s easy to verify)
 - But extremely hard to configure. Best Effort is simpler
 - You can use lots of buffers
 - And dissipate lots of power
 - You can create complex routing
 - Fixed, simple single-path routing saves energy and area
 - You can try to balance traffic
 - Single-path routing works better with links of uneven capacity
 - You can make packets conflict with each other
 - Better use priority levels and pre-emption
Where do the NoC-RT talks fit?

- **OLD RULES**
 - Fabien Clermidy (LETI), Abbas Sheibanyrad (TIMA)
 - Async NOC supporting reconfigurations and DVFS
 - Geir Åge Noven (Kongsberg), Eberhard Schuler (PACT), Kees Goossens (NXP)
 - TDM circuit-switching NOC supporting guaranteed service
 - Domique Houzet (INP)
 - NoC supporting parallel programming constructs
 - Laurence Pierre (TIMA), Constantin Papadas (ISD)
 - Formal verification and modeling of NOC
 - Souyri+Coldefy+Koebel+Lefftz (Astrium)
 - NoC supporting system integration (HW+SW)

- **NEW RULES**
 - Axel Jantsch (KTH), Riccardo Locatelli (STM)
 - hw+sw programmable NOC
 - Gerard Rauwerda (Recore Systems)
 - NoC for reconfigurable many-core
 - Bjorn Osterloh (Braunschweig), Steve Parkes (Dundee)
 - SpW-NOC for reliability, reconfiguration
 - Claudia Rusu (TIMA), Martin Radetzki (Stuttgart)
 - Faults and fault tolerance
Summary

• Interesting area!
 – Complex
 – Multi-disciplinary
 – Many open issues, but already useful
 – Many design decisions to take

• Space application will require special types of NoC
 – Faults, reconfiguration, ??
Network on Chip