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Buses are becoming spaghetti
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The NoC Paradigm Shift
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— Bus
e Architectural paradigm shift

— Replace the spaghetti by a customized network
e Usage paradigm shift

— Pack everything in packets
e Organizational paradigm shift

— Confiscate communications from logic designers
— Move it to physical design




Organizational Paradigm Shift

Buses:
Designed in VHDL
By architects and
logic designers

System architecture

Chip architecture

Spec

Logic design (RTL — VHDL)

Netlist

\ 4

Physical design (layout)

NOC:
art of physical design:
HARD I|P-cores
Global components

Driven mostly at
architecture level

Interfaces specified
at logic design level



How is it designhed?
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 3-way collaboration: Architects, logic designers, backend
* Requires novel special CAD !
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Why go there?
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o Efficient sharing of wires

e Lower area / lower power / faster operation
o Shorter design time, lower design effort

e Scalability

e Enable using custom circuits for comm



NoC is already here!

e Companies use (try) it
— Freescale, NXP, STM, Infineon, Intel, ...

e Companies sell it

— Sonics (USA), Arteris (France), Silistix (UK), ...

e Annual IEEE Conference
— NOSC 2007: Princeton, USA
— NOCS 2008: Newcastle, UK
— NOCS 2009: San Diego, USA
— NOCS 2010: Grenoble, France
— NOCS 2011: Pittsburgh, USA



What's in the NoC?

Source

network interface

Packet stands in line,
contends for output

OR:
Time slots allocated, N
Circuits are switched,
And packets are
pre-scheduled



What flows in the NoC?

Basic unit exchanged by end-points is the PACKET

Packets broken into many FLITs
— “flow control unit”
— Typically # bits = # wires in each link (variations)

— Typically contains some ID bits, needed by each switch along
the path:

e Head / body / tail

¢ VC #

o SL#
FLITs typically sent in a sequence, making a “worm”
going through wormhole.

Unlike live worms, FLITs of different packets may
interleave on same link
— Routers know who's who
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FLIT interleaving




Merging of disciplines

SOC /CMP
Architecture

Data
Networking

=» confusion of terminology
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NoC vs. Off-chip Networks

NoC

Main costs power & area
Wires are relatively cheap
Prefer simple hardware
Latency is critical

Traffic may be known
a-priori

Design time specialization
Custom NoCs are possible
No faults, no changes

Off-Chip Networks

Power and area negligible
Cost is in the links

Uses complex software
Latency is tolerable

Traffic/applications
unknown

Changes at runtime
Adherence to standards
Faults and changes

13




Simplest NoC router:
Single level

INPUT PORT > > OUTPUT PORT
INPUT PORT > >< > OUTPUT PORT
INPUT PORT > SWITCH > OUTPUT PORT
BUFFERS ! Software ?
Very expensive Very expensive
on chip on chip




Virtual Channels (VC):
Multiple same-priority levels
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Service

Levels (a.k.a. VC....):

Multiple priority levels

» INPUT PORT > > OUTPUT PORT
> INPUT PORT g > OUTPUT PORT
v
» INPUTPORT | ™ > OUTPUT PORT
] —>
> INPUT PORT - > OUTPUT PORT
v
» INPUT PORT - > OUTPUT PORT
SWITCH >
» INPUT PORT g > OUTPUT PORT

Imagine:

Both VC and SL (two dimensions)
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Statistical network delay

% of packets

Delay

e Some packets delayed longer than others
— Due to blocking

e Guaranteed service NoC can eliminate the
uncertainty
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Average delay depends on load
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Fully loaded networks crash ! - Plan for <50% .



Quality-of-Service in NoC

e Multiple priority (service) levels
— Define latency / throughput,,

— Example:
e Signaling
e Real Time Stream
e Read-Write

— Preemptive ‘l ‘ |Hh]m h}
e Best Effort performance %%HH

— E.g. 0.01% arrive
later than required

* E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny., “QNoC: QoS architecture and design process
for Network on Chip”, JSA special issue on NOC, 2004. .



SoC with NoC
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SoC with NoC
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e What clock for the interconnect?
— Fastest?

— Opportunistic? S

— None?




The case for Async NoC and hard IP cores

e NOCs are for large SOCs
e Large SOCs = multiple clock domains
— NOCs in large SOCs should be asynchronous

e Two complementary research areas:
— Asynchronous routers
e simplify design, low power
— Asynchronous interconnect
e high bandwidth, low power

e Problem: need special CAD, special methodology

— Solutions:
o deliver and use as “configurable hard IP core”
e use only at physical design phase
e deliver as predesigned infrastructure (FPGA, SOPC)
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NoC: Three Levels

e Circuits
— Wires, Buffers, Routers, NI

e Network
— Topology, routing, flow-control

e Architecture
— Everything is packets
— Traffic must be characterized
— NoC can extend to other chips
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Circuit Issues

Power challenge

— Possible power sorting: Modules > NI > Switching > buffers >
wires

— Network interface (NI)
o Buffer, request and allocate, convert, synchronize

— Switches: X-bar or mux, arbitrated or pre-configured
— Buffers: Enabled SRAM vs. FF
— Wires: Parallel vs. serial, low voltage, fast wires

Area challenge (a.k.a. leakage power)
Latency challenge

Design challenge

— These circuits are not in your typical library !
EDA challenge

— Flow? Algorithms? NoC compiler?

Who is the user?

— Logic design vs. back-end
* Not fit for simple HDL synthesis. Needs customized circuits
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Networking Issues

e Topology: Regular mesh or custom?
— ASIC are irregular

e Topology: Flat or hierarchical?
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Networking Issues (cont.)

e Topology: Low or high radix?
— Higher radix nets provide fewer hops (lower dynamic
power)
— But use more wires and more drivers / receivers
(higher static power)
e How many buffers?

— They are expensive (dynamic and static power)
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Networking Issues (cont.)

e Guaranteed Service or Best Effort?
— GS easy to verify performance

— GS employs no buffers (only muxes): faster, lower
power

— But GS good only for precise traffic patterns
— Philips (NXP) combined GS and BE

e Routing: Flexible or simple?
— Flexible routing bypasses faults and congestions

— Multiple routes may require re-ordering (expensive)

— Fixed, simple single-path routing saves energy and
area

e Multiple priorities and virtual channels
— Effective but cost buffers
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One size does not fits all!

Reconfiguration

rate
during run time CMP
ASSP
at boot time
FPGA
at design time ASIC
S "
single General FleXIblllty
application purpose computer

e Even within each class several NOCS may be
needed

l. Cidon and K. Goosses, in “Networks on Chips” , G. De Micheli and L. Benini, Morgan Kaufmann, 2006 28



NoC for CMP / Many-core chips

Support known traffic patterns

— CPUs to Shared Cache

— Cache to external memory

— Special I/0 traffic: Graphic, wireless / wired comm, ??
Support unexpected traffic patterns

Provide new services

— Provide cache coherency?

— Manage the shared cache?

— Schedule tasks / processes / threads?
— Support OS?

— Support other memory models ?
e More distributed ? More tightly coupled ?

— Manage 1/0?
One NoC may not be enough...

29



Other Dimensions

ASIC vs FPGA
— In FPGA, NoC by vendor or user?

ASYNC vs SYNC

One chip vs Multiple chips
— 3D, multi-chip systems
HW vs SW

Fixed vs Reconfigurable SoC/NoC
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NoC for Testing SoC

Certain test methods seek repeatable cycle-
accurate patterns on chip I/O pins

But systems are not cycle-accurate
— Multiple clock domains, synchronizers, statistical
behavior

NoC facilitate cycle-accurate testing of each
component inside the SoC
— Enabling controllability and observability on module
ins
po Instead of chip pins
Can be extended to space
— Decomposed testing and b-scan in mission
— Useful together with reconfiguration
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Some rules were made to be broken..

Beware the Net !

e Adopting just any off-chip net feature
to NoC may be a mistake

— You can create an elegant regular topology
e But ASICs are often irregular

— You can create a non-blocking network
e But hot spots can block networks of infinite capacity

— You can guarantee service (it's easy to verify)
e But extremely hard to configure. Best Effort is simpler

— You can use lots of buffers
e And dissipate lots of power

— You can create complex routing
e Fixed, simple single-path routing saves energy and area

— You can try to balance traffic
e Single-path routing works better with links of uneven
capacity
— You can make packets conflict with each other
e Better use priority levels and pre-emption
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Where do the NoC-RT talks fit?

OLD RULES

Fabien Clermidy (LETI), Abbas Sheibanyrad (TIMA)
e Async NOC supporting reconfigurations and DVFS

ESI\(Ie)i(rP/;ge Noven (Kongsberg), Eberhard Schuler (PACT), Kees Goossens

e TDM circuit-switching NOC supporting guaranteed service
Domique Houzet (INP)

e NoC supporting parallel programming constructs
Laurence Pierre (TIMA), Constantin Papadas (ISD)

e Formal verification and modeling of NOC
Souyri+Coldefy+Koebel+Lefftz (Astrium)

e NoC supporting system integration (HW+SW)

NEW RULES

Axel Jantsch (KTH), Riccardo Locatelli (STM)
e hw+sw programmable NOC
Gerard Rauwerda (Recore Systems)
e NoC for reconfigurable many-core
Bjorn Osterloh (Braunschweig), Steve Parkes (Dundee)
e SpW-NOC for reliability, reconfiguration
Claudia Rusu (TIMA), Martin Radetzki (Stuttgart)
e Faults and fault tolerance
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Summary

e Interesting area!
— Complex
— Multi-disciplinary
— Many open issues, but already useful
— Many design decisions to take

e Space application will require special types of
NoC

— Faults, reconfiguration, ??
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Network on Chip
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