

Networks on Chip (NOC)

Ran Ginosar

Prof. EE & CS Technion-Israel Institute of Technology ran@ee.technion.ac.il www.ee.technion.ac.il/~ran

CEO

Ramon Chips, Ltd. ran@ramon-chips.com

A longer tutorial on NOC: <u>http://circuit.ucsd.edu/~nocs2009/tutorials.php</u>

Acknowledgement

- Large research group at the Technion
 - Israel Cidon (Networking)
 - Ran Ginosar (VLSI)
 - Idit Keidar (Distributed Systems)
 - Isaac Kesslassy (Networking)
 - Avinoam Kolodny (VLSI)
 - Uri Weiser (Architecture)
- Past and present graduate students
 - Evgeny Bolotin, Roman Gindin, Reuven Dobkin, Zvika Guz, Ran Manevich, Arkadiy Morgenshtein, Zigi Walter, Asaf Baron, Dmitry Vainbrand

• Support by companies and funding agencies

- Intel, Freescale, CEVA, Zoran, Israel government, EU FP7, USA SRC
- Large international research community since ~2000
 - Lots of literature
- Several companies making + using NoC

Buses are becoming spaghetti

The NoC Paradigm Shift

- Architectural paradigm shift
 - Replace the spaghetti by a <u>customized</u> network
- Usage paradigm shift
 - Pack everything in packets
- Organizational paradigm shift
 - Confiscate communications from logic designers
 - Move it to physical design

Organizational Paradigm Shift

How is it designed? Place Modules Trim Adjust routers / link ports / capacities links

- 3-way collaboration: Architects, logic designers, backend
- Requires novel special CAD !

Why go there?

- Efficient sharing of wires
- Lower area / lower power / faster operation
- Shorter design time, lower design effort
- Scalability
- Enable using custom circuits for comm

NoC is already here!

- Companies use (try) it
 - Freescale, NXP, STM, Infineon, Intel, ...
- Companies sell it
 - Sonics (USA), Arteris (France), Silistix (UK), ...
- Annual IEEE Conference
 - NOSC 2007: Princeton, USA
 - NOCS 2008: Newcastle, UK
 - NOCS 2009: San Diego, USA
 - NOCS 2010: Grenoble, France
 - NOCS 2011: Pittsburgh, USA

What's in the NoC?

What flows in the NoC?

- Basic unit exchanged by end-points is the PACKET
- Packets broken into many FLITs
 - "flow control unit"
 - Typically # bits = # wires in each link (variations)
 - Typically contains some ID bits, needed by each switch along the path:
 - Head / body / tail
 - VC #
 - SL #
- FLITs typically sent in a sequence, making a "worm" going through wormhole.
- Unlike live worms, FLITs of different packets may interleave on same link
 - Routers know who's who

FLIT interleaving

Merging of disciplines

→ confusion of terminology

NoC vs. Off-chip Networks

NoC

- Main costs power & area
- Wires are relatively cheap
- Prefer simple hardware
- Latency is critical
- Traffic may be known a-priori
- Design time specialization
- Custom NoCs are possible
- No faults, no changes

Off-Chip Networks

- Power and area negligible
- Cost is in the links
- Uses complex software
- Latency is tolerable
- Traffic/applications unknown
- Changes at runtime
- Adherence to standards
- Faults and changes

Simplest NoC router: Single level

Virtual Channels (VC): Multiple same-priority levels

Service Levels (a.k.a. VC....): Multiple priority levels

Imagine: Both VC and SL (two dimensions)

Statistical network delay

- Some packets delayed longer than others
 Due to blocking
- Guaranteed service NoC can eliminate the uncertainty

Average delay depends on load

Fully loaded networks crash $! \rightarrow$ Plan for <50% $_{18}$

Quality-of-Service in NoC

- Multiple priority (service) levels
 - Define latency / throughput_N
 - Example:
 - Signaling
 - Real Time Stream
 - Read-Write
 - DMA Block Transfer
 - Preemptive
- Best Effort performance
 - E.g. 0.01% arrive later than required

^{*} E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny., "QNoC: QoS architecture and design process for Network on Chip", JSA special issue on NOC, 2004.

SoC with NoC

• Each color is a separate clock domain

SoC with NoC

- What clock for the interconnect?
 - Fastest?
 - Opportunistic?
 - None?

The case for Async NoC and hard IP cores

- NOCs are for large SOCs
- Large SOCs = multiple clock domains
- \rightarrow NOCs in large SOCs should be asynchronous
- Two complementary research areas:
 - Asynchronous routers
 - simplify design, low power
 - Asynchronous interconnect
 - high bandwidth, low power
- Problem: need special CAD, special methodology
 - Solutions:
 - deliver and use as "configurable hard IP core"
 - use only at physical design phase
 - deliver as predesigned infrastructure (FPGA, SOPC)

NoC: Three Levels

- Circuits
 - Wires, Buffers, Routers, NI
- Network
 - Topology, routing, flow-control
- Architecture
 - Everything is packets
 - Traffic must be characterized
 - NoC can extend to other chips

Circuit Issues

• Power challenge

- Possible power sorting: Modules > NI > Switching > buffers > wires
- Network interface (NI)
 - Buffer, request and allocate, convert, synchronize
- Switches: X-bar or mux, arbitrated or pre-configured
- Buffers: Enabled SRAM vs. FF
- Wires: Parallel vs. serial, low voltage, fast wires
- Area challenge (a.k.a. leakage power)
- Latency challenge
- Design challenge
 - These circuits are not in your typical library !
- EDA challenge
 - Flow? Algorithms? NoC compiler?
- Who is the user?
 - Logic design vs. back-end
 - Not fit for simple HDL synthesis. Needs customized circuits

Networking Issues

- Topology: Regular mesh or custom?
 - ASIC are irregular
- Topology: Flat or hierarchical?

Networking Issues (cont.)

- Topology: Low or high radix?
 - Higher radix nets provide fewer hops (lower dynamic power)
 - But use more wires and more drivers / receivers (higher static power)
- How many buffers?
 - They are expensive (dynamic and static power)

Networking Issues (cont.)

- Guaranteed Service or Best Effort?
 - GS easy to verify performance
 - GS employs no buffers (only muxes): faster, lower
 - But GS good only for precise traffic patterns
 - Philips (NXP) combined GS and BE
- Routing: Flexible or simple?
 - Flexible routing bypasses faults and congestions
 - Multiple routes may require re-ordering (expensive)
 - Fixed, simple single-path routing saves energy and area
- Multiple priorities and virtual channels
 - Effective but cost buffers

One size does not fits all!

Even within each class several NOCS may be needed

NoC for CMP / Many-core chips

- Support known traffic patterns
 - CPUs to Shared Cache
 - Cache to external memory
 - Special I/O traffic: Graphic, wireless / wired comm, ??
- Support unexpected traffic patterns
- Provide new services
 - Provide cache coherency?
 - Manage the shared cache?
 - Schedule tasks / processes / threads?
 - Support OS?
 - Support other memory models ?
 - More distributed ? More tightly coupled ?
 - Manage I/O?
- One NoC may not be enough...

Other Dimensions

- ASIC vs FPGA
 - In FPGA, NoC by vendor or user?
- ASYNC vs SYNC
- One chip vs Multiple chips
 - 3D, multi-chip systems
- HW vs SW
- Fixed vs Reconfigurable SoC/NoC

NoC for Testing SoC

- Certain test methods seek repeatable cycleaccurate patterns on chip I/O pins
- But systems are not cycle-accurate
 - Multiple clock domains, synchronizers, statistical behavior
- NoC facilitate cycle-accurate testing of each component inside the SoC
 - Enabling controllability and observability on module pins
 - Instead of chip pins
- Can be extended to space
 - Decomposed testing and b-scan in mission
 - Useful together with reconfiguration

Beware the Net !

- Adopting just any off-chip net feature to NoC may be a mistake
 - You can create an elegant regular topology
 - But ASICs are often irregular
 - You can create a non-blocking network
 - But hot spots can block networks of infinite capacity
 - You can guarantee service (it's easy to verify)
 - But extremely hard to configure. Best Effort is simpler
 - You can use lots of buffers
 - And dissipate lots of power
 - You can create complex routing
 - Fixed, simple single-path routing saves energy and area
 - You can try to balance traffic
 - Single-path routing works better with links of uneven capacity
 - You can make packets conflict with each other
 - Better use priority levels and pre-emption

Where do the NoC-RT talks fit?

- OLD RULES
 - Fabien Clermidy (LETI), Abbas Sheibanyrad (TIMA)
 - Async NOC supporting reconfigurations and DVFS
 - Geir Åge Noven (Kongsberg), Eberhard Schuler (PACT), Kees Goossens (NXP)
 - TDM circuit-switching NOC supporting guaranteed service
 - Domique Houzet (INP)
 - NoC supporting parallel programming constructs
 - Laurence Pierre (TIMA), Constantin Papadas (ISD)
 - Formal verification and modeling of NOC
 - Souyri+Coldefy+Koebel+Lefftz (Astrium)
 - NoC supporting system integration (HW+SW)
- NEW RULES
 - Axel Jantsch (KTH), Riccardo Locatelli (STM)
 - hw+sw programmable NOC
 - Gerard Rauwerda (Recore Systems)
 - NoC for reconfigurable many-core
 - Bjorn Osterloh (Braunschweig), Steve Parkes (Dundee)
 - SpW-NOC for reliability, reconfiguration
 - Claudia Rusu (TIMA), Martin Radetzki (Stuttgart)
 - Faults and fault tolerance

Summary

- Interesting area!
 - Complex
 - Multi-disciplinary
 - Many open issues, but already useful
 - Many design decisions to take
- Space application will require special types of NoC
 - Faults, reconfiguration, ??

Network on Chip

