

NoC Concepts with XPP-III

PACT

Overview

1. Overview

- Target Architecture
- Interface Types
- Communication Mechanisms

2. Building Blocks

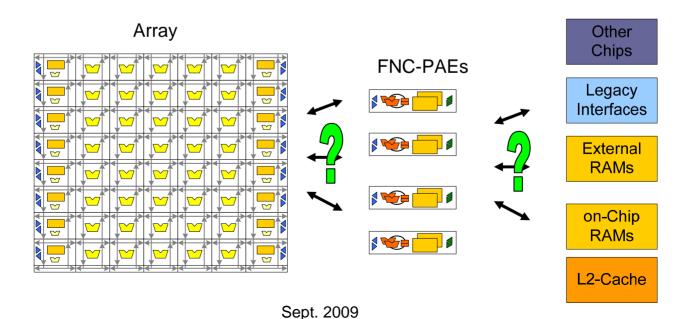
- Crossbars
- DMAs
- Arbiters
- Building a Chip around the NoC

3. Motivation

- Hardware Design and Backend
- Software Support

4. Examples and Potential

- HPDP Space processor
- Usage scenarios
- Outlook and Conclusion

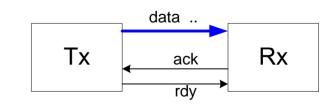


XPP and Communication

ACT XPP-III Signal Processor Architecture

- Signal Processor with 2 Types of Processing Engines:
- FNC-PAEs: 8-ALU VLIW-type control processors (16-bit)
- XPP-Array: Reconfigurable coarse grained Array architecture based on ALU-PAEs and RAM-PAE Elements

How to link processing cores and connect with memories and interfaces ?


Basic Communication Mechanism: Streams

CT Three Point-to-point Stream Types:

- Data stream: ____ 16-bit wide
- Event stream: 1-bit control information
- *Memory channel* with two timely independent streams:
 - 64-bit data and address stream (to memory)
 - **64-bit** *read response stream* (from memory)

Simple Stream Protocol

- Any single transferred Data/Event/Memory word is transferred with handshake signals
- single one-word "packets"
- Sender: enters packets into a queue
- Receiver: reads packets from queue
- Queues may stall, but no data can be lost
- Programmer does not need to care about timing, only the order of packets must be maintained.

How to link Stream-Based Components ?

CT Solution Alternatives

- a. Convert streams to Bus Protocol, eg. AHB ?
 - Pipelining difficult we loose bandwidth
 - High overhead per stream for Bus protocol converter
 - Bus topology (multi layer AHB) difficult to design for large chips and high frequency
 - From the shelf peripherals (DMA etc.) can be used
- b. Special Components that directly link streams
 - Full pipelining: maximum bandwidth
 - No overhead for stream converters
 - Pipelined communication structure adaptable to any chip topology
 - Special modules to be designed

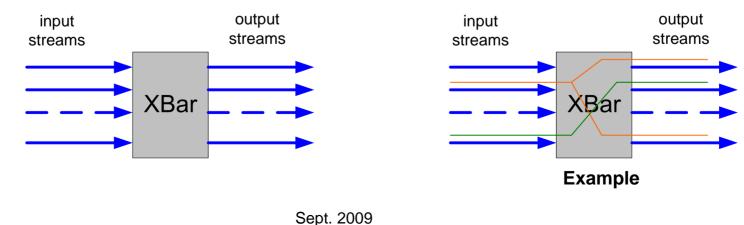
PACT's NoC Solution

CT NoC Alternatives

- Packet switched or circuit switched ?
 - (a) Packet switched Network requires hardware overhead in any node, packets need headers and overhead in the array software.
 - (b) Circuit switched Network is simpler and fully under software control. Only payload is transferred.

XPP-III Solution: (b) Circuit switched Network

- Crossbars (XBar) for Data and Event streams
- Arbiter for Memory Channels, routing with address-ranges
- DMA controllers convert data streams to Memory channels
- Software Setup and Routing Control via FNC-PAE processor
- API for easy setup of application communication topology

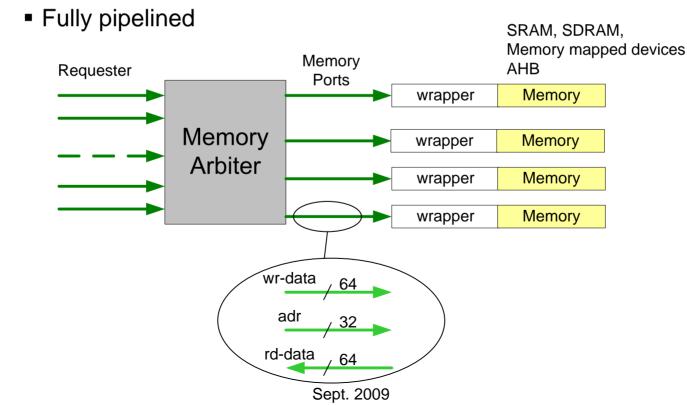

NoC Components

General

- All Components can be stitched together (Plug&Play)
- Any Chip topology possible
- IP models are configurable (number of ports, FIFO sizes etc.)
- Control via pipelined configuration bus through FNC-PAEs and interrupt

XBar

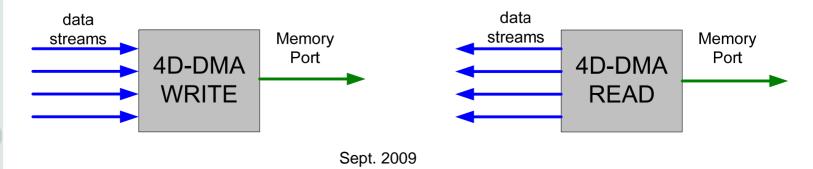
- Data and Event streams
- 1..31 inputs, 1..31 outputs, non blocking
- 1:n connections with full handshake

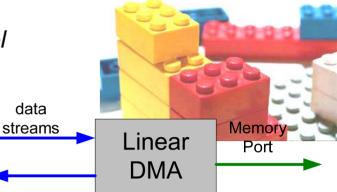


NoC Components

T Memory Arbiter

- 1 .. 14 Requester Ports
- 1..4 Memory Ports, 4 simultaneous memory accesses.
- Programmable "fair" Requester priorities
- Support for Atomic Memory access
- Routing to Memory ports with programmable address ranges

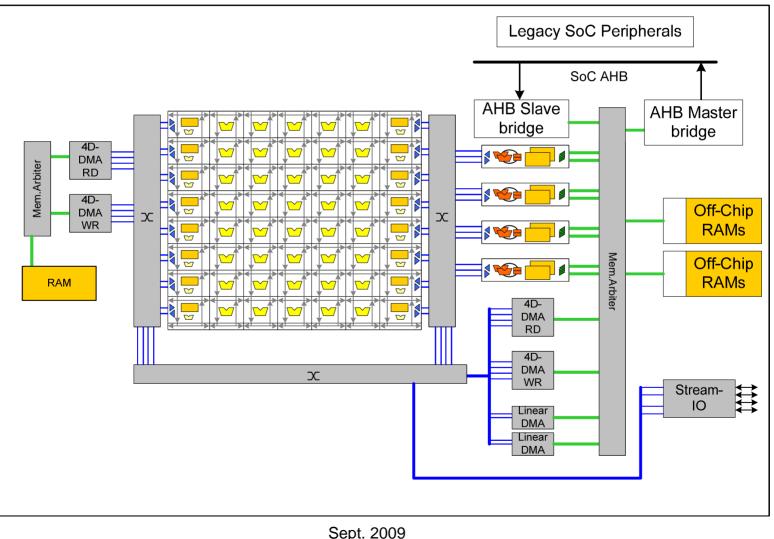

NoC Components


Linear DMA

- Converts Data streams to Memory channel
- Linear address pattern
- Optimized Memory access, 64-bit bursts
- Arbitrated Memory read and write

4D-DMA-Read, 4D-DMA-Write

- Converts up to 4 data streams to a Memory channel
- Complex address patterns (e.g. moving area in video frame etc.)
- Optimized Memory access, 64-bit bursts
- Interrupt on final physical memory write (for save software synchronization)



Building the NoC from Components

1.) Connect XBars

2.) Add DMA Controller and Memory Arbiter

3.) Add Memory wrapper, SoC Peripherals etc.

Motivation for the chosen NoC Architecture

T Bandwidth

- Streaming applications (SDR, Video, Codecs) require guaranteed bandwidth on (most) channels
- Communication pattern is fixed per application
- Reconfigurable platform can serve multiple streams in parallel
- Automatic synchronization of streams and processing resources w/o software overhead (fully transparent)
- Allows full pipelining which is difficult with bus protocols.
- Save Clock domain crossing within streams

Chip Design

- Simple Plug &Play IP modules for any SoC Topology
- Easy verification due to simple protocol
- XBar/Arbiter structure can be specified for optimal floorplanning
- Additional stream-pipe insertion for higher frequencies and timing closure

Software Support

Control through FNC-PAE Library

- FNC-PAEs are optimized for control tasks
- API for connectivity: "connect device A with device B"
- API for DMAs and other components
- Semaphores & Mutexes
- Cycle Accurate SystemC Simulator
- Multi-Chip Simulation

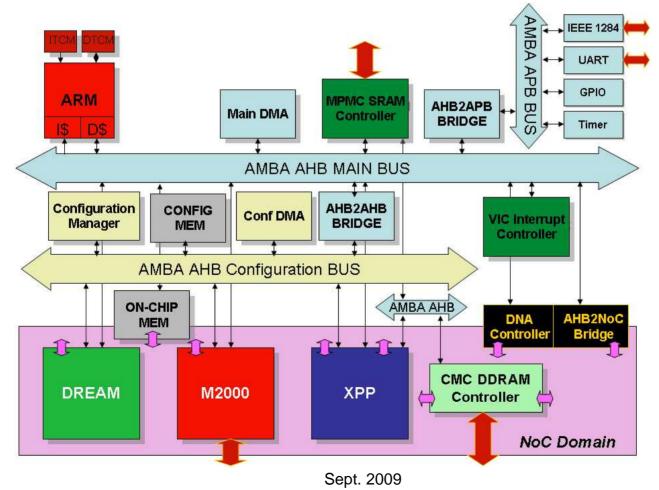
Linking with SoC infrastructure and other NoCs

CT SoC interfacing

- Most SoCs are AMBA based
- Conversion of standard protocol to XPP NoC:
 - AHB Master bridge provides XPP-NoC access to AHB Peripherals, Memory etc.
 - AHB Slave bridge provides AHB-Processor access to XPP Memory (external)
 - AHB FNC-IO bridge that allows AHB-Processor access to XPP Components (e.g. DMA controller) via NoC

Stream interfacing to other NoC Architectures

- FIFOs for input and output
- Self synchonizing to external NoC speed and latencies
- Example in the following ..

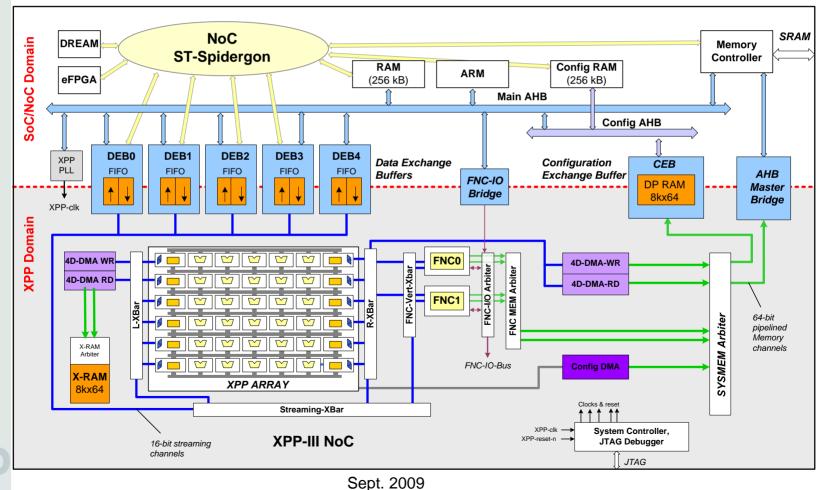


Example: MORPHEUS SoC

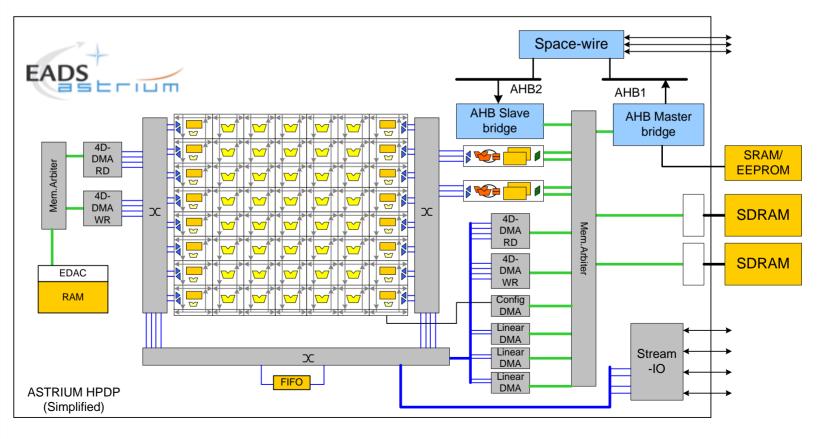
MORPHIZUS

MORPHEUS Chip

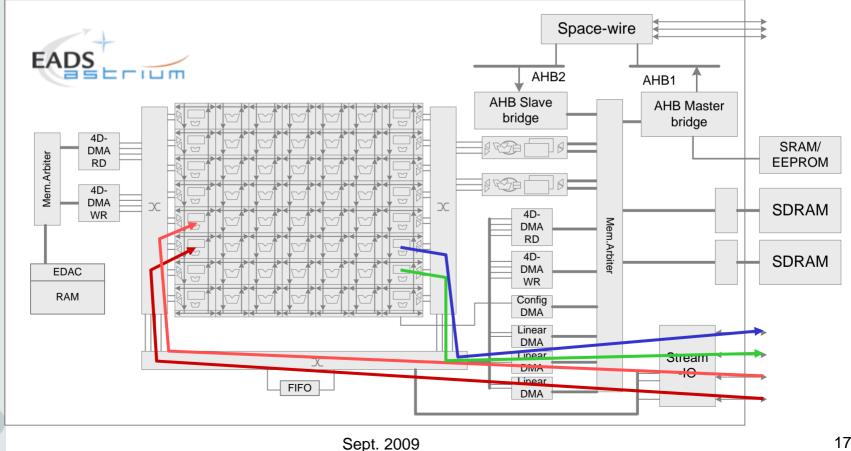
- ARM Control Processor + 3 Reconfigurable Engines (HRE)
- HREs embedded into 8-node ST Spidergon NoC + DMA within nodes
- Fully functional Silicon (MPW) (ST CMOS 090)



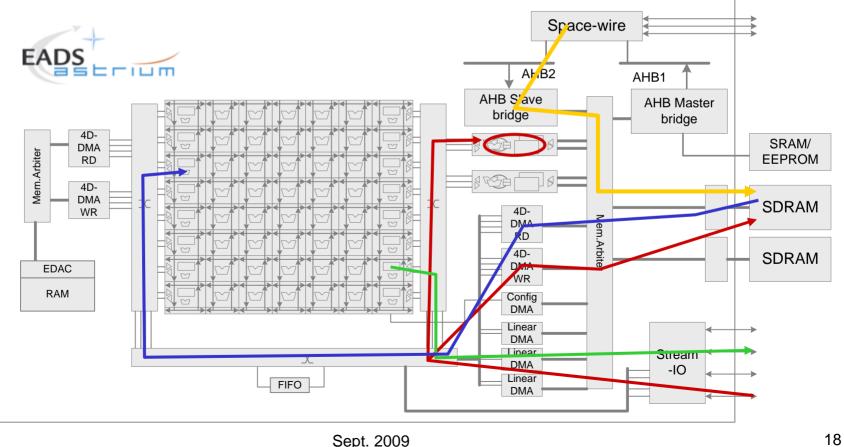
MORPHEUS XPP-III und SoC/NoC Interfaces


- Data Exchange Buffers (DEB): FIFOs to NoC and Main AHB
- Configuration Exchange Buffers (CEB): Dual Ported RAM, (XPP code)
- AHB Master bridge to Memory Controller
- FNC-IO-Bridge: ARM Access to Components

ASTRIUM's HPDP Processor

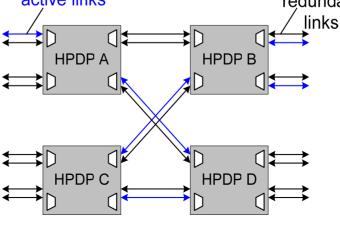

- XPP-III processor core
- Spacewire links
- Stream-IO for inter-chip communication (+ redundancy) extends onchip NoC to other HPDPs or data sinks/sources.
- Multiple clock domains

HPDP NoC Usage Scenario (1)


- Stream-IO complex in
- Stream-IO complex out

HPDP NoC Usage Scenario (2)

- Stream-IO in → FNC0 and Stream-IO in via 4D-DMA-WR → SDRAM
- FNC0 performs header detection and starts 4D-DMA-RD
- SDRAM via 4D-DMA-RD → Array
- Array → Stream-IO out
- In parallel: variables update via Spacewire on SDRAM


XPP NoC Benefits for Space

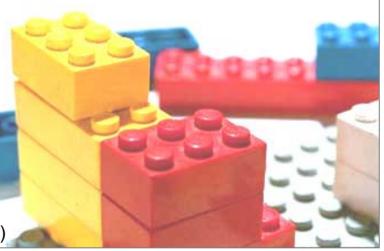
PACT HPDP Chip

- Reconfigurable communication Network (for regenerative payload)
- Guaranteed bandwidth e.g. for SDR applications
- Implicit redundancy: defect paths can be bypassed
- Supervision of results: transparent stream snooping with FNC-PAEs
- parallel background operations without affecting bandwidth of running applications

System

 Inter-chip and inter-board redundancy with additional Stream-IO Pins (cold standby) active links redundant

XPP


Available NoC Components (from the shelf)

PACT NoC IP Modules

- Fully verified
- Configurable IP
- Cycle accurate SystemC model
- Typically PACT configures and connects the IP: The verified core and Simulator is delivered to customers

IP

- XBars (Data, Event)
- 4D-DMA, Linear DMA, Array configuration DMA
- RAM-IO (direct Array memory I/O)
- Memory Arbiter
- FNC-IO Arbiter and Hierarchical decoder
- Stream-IO
- Stream FIFOs
- SRAM Memory wrapper
- Clock Domain crossing for all stream types
- Stream Pipes
- Protocol keeper (to stop clock for debugging)

Outlook & Conclusion

PACT NoC Roadmap

- XBars with dynamic routing controlled by event or data streams
- Wider data paths (eg. with parity, Floating Point-words)
- Extended latency schemes: guaranteed latency (Xbars and Arbiter)
- XBars with n:1 connects and guaranteed latency
- NoC Generator

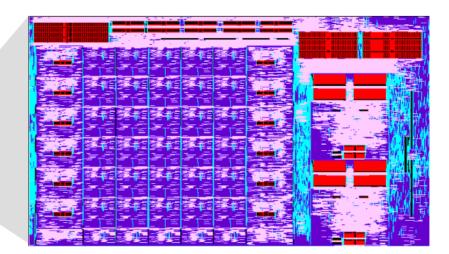
Conclusion

XPP-III NoC

Superior flexibility and bandwidth Plug & Play Modules Communication topology under software control Low area budget and high frequency, Silicon-proven SDK and Simulator of a reference design or HPDP available

THANK YOU !

1 1 N


BACKUP

Morpheus chip

e word dream_top	
MPP_REF_DESIGN_MORPHEUS_WITH_SYSCO	

- SoC and XPP-III fully functional
- XPP-III section: 150 MHz @1.0V, 200 MHz @1,12V
- XPP-III dyn. power: 7.6 mW/MHz (max. Stress Test)
- SoC 110 mm², XPP-III ~40 mm² (no area optimisation)
- Application: Professional Video