

ESA IP cores portfolio

- Processor
 - Leon2 FT
 → Fault tolerant Sparc V8 architecture
- Data handling Interfaces
 - − CAN→ CAN B controller
 - 1553 → MIL-1553-B protocol, 3 modes Bus Controller (BC), Remote
 - Terminal (RT), Bus Monitor (BM)
 - SpaceWire serial links (up to 400 Mbits/s)
 - SpaceWire-b → transceiver CODEC
 - SpaceWire-RMAP → Remote memory access protocol (RMAP)
 - SpaceWire-AMBA → SpaceWire with AMBA interface & RMAP protocol
- Telemetry and telecommand (CCSDS protocol)
 - − PDEC → Packet Telecommand Decoder
 - − PTCD → Packet Telecommand Decoder
 - − PTME → Packet Telemetry Encoder

for more info please refer to ESA microelectronics WEB page, IP cores section:

http://www.esa.int/TEC/Microelectronics/SEMVWLV74TE_0.html#subhead2

 \rightarrow

Processors developments

- On going activity
 - NGMP

- Next Generation Microprocessor

 Leon4 FT multi core AMBA AHB (bus architecture)

 Contract awarded to Gaisler Aeroflex (Gothenburg / Sweden)

 Goals:
 - To demonstrate Performances > 400 MIPS

- On going pre-studies
 - MPP

- Massive Parallel Processor
 Tile processor array (Network on Chip architecture)
 Goals:
 - To demonstrate performances > 1 GFlops
 - To demonstrate scalability (many cores)

Contract awarded to Recore and Twente University (The Netherlands).

NGDSP

- → Next Generation Digital Signal Processor
 - To demonstrate performances > 1 GFlops
 - TI, Analog Device, Atmel solutions under evaluation

Spacecraft Controller On Chip → SCOC3 (Astrium / France)

SCOC3

- SCOC3 is a system on chip for spacecraft control and data handling
- SCOC3 performs the following tasks
 - Attitude Orbital Control System (AOCS) → spacecraft main computer
 - Telemetry and telecommand (TM/TC) → compliant with CCSDS standard
 - House keeping, time and power management
- SCOC3 encompasses the following IPs blocks
 - A processing unit is built around a LEON3 FT processor with a floating point unit (GRFPU) and a memory controller communicating via a CPU-AHB AMBA bus (120 MHz / 100MIPS)
 - A set of IOs
 - UART
 - CAN
 - 1553 (Bus controller & remote terminal)
 - SpaceWire with RMAP controller
 - CCSDS TM/TC
 - Packet telemeasure encoder (PTME)
 - Telecommand decoder (TDCA)
 - CCSDS time generator

COCOS (COmputerCOreSupport) I/O + **LE**ON2-FT processor = COLE

NoC round table

COLE

- COLE encompasses the following IPs blocks
 - LEON2 FT processor with a floating point unit (Meiko) and a memory controller (100 MHz / 86 MIPS)
 - A set of IOs
 - Three MIL-STD-1553B bus interfaces
 - OBDH bus Central Terminal
 - Three PacketWire Receivers and Transmitters
 - Three High-Speed UART
 - General purpose I/O Interface with 12 I/Os
 - On Board Time (OBT) with synch. pulses
 - Alarm Signal Generator
 - Watchdog

Remote Terminal Controller → RTC (RUAG / Sweden)

RTC

- RTC is a remote terminal controller
- RTC performs the following tasks
 - Digital acquisitions
 - Timers & pulses generation
 - watchdog
 - Interfaces with AD / DA
- RTC encompasses the following IPs blocks
 - LEON2 FT processor with a floating point unit (Meiko) and a memory controller (50 MHz / 34 MIPS)
 - A set of IOs
 - General purpose I/O Interface with 24 I/Os
 - 2 UARTS
 - HurriCANe CAN core
 - 2 SpW CoDec with RMAP

Multi-DSP/Micro-Processor → MDPA (Astrium / Germany)

MDPA

- MDPA is a payload control processor scalable to multi-processors via SpaceWire
- MDPA performs the following tasks
 - High data rate payload telemetry / telecommand compliant with DVB-S (600 kbps in each direction)
- MDPA encompasses the following IPs blocks
 - LEON2 FT processor with a floating point unit (Meiko) and a memory controller (80 MHz / 70 MIPS)
 - A set of IOs
 - General purpose I/O Interfaces
 - 2 MIL-STD-1553B Interface Controller
 - UARTS
 - 1 HurriCANe CAN core
 - 8 SpaceWire interfaces

Trends and limitations in SoC design today

- Features embedded in SoCs tend to get more and more complex
- The number of IP blocks increases
- Bus based solutions (i.e AMBA –AHB) exhibit limitations:
 - · Bus is a shared communication medium, therefore arbitration mechanisms are needed to attribute the bus resource
 - 1 master active at a time
 - Bus clock rate decreases as the number of IP blocks increases
 - Bus topology is not scalable when the number of peripherals increases
- Multi-layer bus architectures may alleviate some limitations mentioned above at the expense of extra complexity
- In modern sub-micron technologies interconnects dominate designs
 - Place & route, timing closure become tricky when number of IP blocks and bus data rates increase
 - Signal integrity issues with large synchronous parallel buses (crosstalk)
 - · Performance (bus bandwidth) collapses when capacitive loads and number of IP blocks increases

Can NoC improve the situation ?

Advantages

- Point to point connection between IP blocks
 - · Eases timing closure and signal integrity
 - · Increases throughput thanks to limited capacitive load on each link
 - Eases the implementation of the GALS concepts (Globally Asynchronous Locally Synchronous)
- Decoupling between processing units and communication interfaces can ease floor plan and place & route
- Several masters can be active at the same time
- Serial links or serial/parallel links can ease place & route compared to large synchronous parallel buses

Drawbacks

- Latency (routers hops) can be an issue in time critical applications
 - Latency issue can be overcome if shortcuts can be established between remote nodes
- Performance may collapse if applications / algorithms don't exhibit a certain degree of locality
 - · Access to remote memories out of the processing node may degrade performance
 - Communication links with the processing unit and immediate neighbours shall be maximised
- Traffic modelling tools and network dimensioning might be more complex than traditional well known bus based architectures

Typical 2D mesh NoC topology

Future perspectives

- On going ESA TRP contract to develop the future Space ASIC technology (ST 65nm node)
- Future DSM technology will require the development of a specific backbone IPs interconnect fabric (NoC)
- The NoC may allow a clear decoupling between processing units and communication
- The decoupling may alleviate some of the cumbersome problems predominant in DSM technologies
 - Timing closure
 - Signal integrity
 - Floor plan, Place & Route

Future perspectives

- Despite few drawbacks such as latency and extra complexity (routers) advantages overcome drawbacks when targeting DSM technologies (65nm and below)
- The tremendous integration capacity offered by DSM technologies will allow redundancy (spare nodes)
- The use of NoCs for Space applications will require further investigation in the following fields:
 - Time predictability
 - QoS
 - Fault tolerance
 - Redundancy
 - Reliability
- Scalability → convergence between on / off chip network?
- Which programming model for many cores applications?

ANY QUESTIONS ?

ENJOY !!! ©