Scalable programmable many-core SoC architectures using NoC technology

Agenda

- Introduction – Recore Systems
 - Multi-core reconfigurable SoC
 - CRISP – General Stream Processor template
 - MPPB – Massively Parallel Processor Breadboarding
Products and services providing complete solutions

- Reconfigurable multi-core designs
 - Tailored for application domains
- Hardware IPs
 - Montium®, Xentium™, and Membium™
 - Network-on-Chip, interfaces, bridges, ...
- Design tools
 - Compilers, simulators, IDEs, ...
- DSP applications
 - Kernel libraries (FFT, FIR, DCT, Viterbi, ...)
 - COTS (wireless, broadcasting, multimedia, ...)
 - Custom engineering services
- Digital radio/TV platform
 - One-chip solution for DMB, DAB(+), ...

Agenda

- Introduction – Recore Systems
- Multi-core reconfigurable SoC
 - CRISP – General Stream Processor template
 - MPPB – Massively Parallel Processor Breadboarding
Multi-core architecture for streaming DSP applications

- General Purpose Processor (GPP) subsystem
 - Control processor
 - Operating System / GUI
 - Configuration management
 - Highly irregular code
 - E.g. ARM or Leon processor(s)

- Reconfigurable fabric
 - Matrix of reconfigurable cores
 - Domain specific
 - Network-on-Chip
 - Distributed memories
 - Distributed control

A truly scalable architecture

- A single platform for all stream processing applications
- A single design methodology
- Scalability by virtue of
 - Packet switched Network-on-Chip
 - Distributed memories
 - Distributed control

Small multi-core platforms for low-end applications (e.g. consumer, automotive)

Large many-core platforms for high-end applications (e.g. medical, defense)
Heterogeneous multi-core

- Scalability by virtue of
 - Packet switched Network-on-Chip
 - Distributed memories
 - Distributed control
- Xentium™ processing tile
 - Block floating-point processing
 - VLIW-like DSP
 - Autonomous program fetching
 - Streaming communication services
- Memtium™ memory tile
 - Embedded SRAM-based memory
 - Dynamically reconfigurable
 - Random access memory
 - FIFO/LIFO/cyclic buffers
 - (De-)interleaving
- Scalability on different levels
 - Cores
 - Systems-on-Chip
 - Boards
 - Cabinets

Agenda

- Introduction – Recore Systems
- Multi-core reconfigurable SoC
- CRISP – General Stream Processor template
- MPPB – Massively Parallel Processor Breadboarding
General Stream Processor architecture

- Modular approach to prove concepts
 - Multiple dies in a chip
 - Multiple chips on a PCB
 - Multiple PCBs in a cabinet

- Multichip modules
 - General Purpose die
 - 32-bit General Purpose Processor
 - Various I/Os
 - Reconfigurable die
 - Reconfigurable Tile Processors
 - Hard macro
 - Smart Memory Tiles
 - Network-on-Chip
 - Various (high-speed) I/Os

The CRI SP PCB contains at least two multi-chip modules for prototyping
Larger systems can be prototyped similarly

The bigger picture...
Agenda

- Introduction – Recore Systems
- Multi-core reconfigurable SoC
- CRISP – General Stream Processor template
- MPPB – Massively Parallel Processor Breadboarding

MPPB architecture overview

- Processing components
 - LEON2 processor
 - Xentium™ processing tile
- On-chip communication
 - AMBA bus system
 - Network-on-Chip
Interfaces
SpW-NoC

- **Purpose**
 - Provides standard interface for space systems

- **Features**
 - Network interface
 - Using ESA SpW-interface as back-end
 - Memory mapped transmit and receive buffers
 - Memory mapped status and configuration registers
 - Minimum link speed (FPGA): 100 Mbit/s

Interfaces
Multi-channel port (MCP)

- **Purpose**
 - Connecting two chips via the NoC
 - Increase resources (interfaces, processors and memory)

- **Features**
 - Transparently forwards the NoC flits
 - Minimum throughput: 1 Gbit/s
 - Performance has been verified on FPGA