

Why NoC for Space?

Philippe Perdu DCT/AQ/LE

Purpose

➤ Neither a NoC tutorial (it will be done later), Nor NoC design challenges and solution presentation, nor ...

> But a short look at

- Trends (nanoelectronics industry and embedded systems for space applications)
- Some DSM reliability challenges
- NoC architecture opportunities to manage DSM reliability issues
- > As a kind of introduction for this Round table
- ➤ Coming from DSM FA / Reliability word (not a NoC specialist)

Outline

- > Few words on CCT MCE
- > Trends
 - Moore's law
 - Space needs
 - Facing the integration consequences: from SoC to NoC
- > DSM reliability challenges
 - Lifetime issue
 - Noise margin issue
 - Manageable
- > NoC an opportunity for high reliability
 - Intrinsic NoC advantage
 - Using the flexibility of NoC
- **Conclusion**

CCT MCE at a glance

Origin (1998)

- Corporate network on many space related techniques (ie MCE, EdB)
- Maintain, develop and advantage skills
- Widely opened to other company dealing with space applications or with the core activity of a specific CCT (electronic Components and MEMS for CCT MCE).

Objectives

- Increase member competences by technical seminar, workshops and tutorials like this round table CCT MCE co organize with ESA;
- Mutualize expertise, Identify and put to light existing skills in and out CNES;
- Bring to members the outstanding studies and developments they can use;
- Disseminate the outstanding studies and developments made by spatial sector to other sectors;
- Give key information to prepare the future

Moore's Law

(DRAM M1 Example)

Nanotechnology trends

Isolation / Contact Scaling

- Exemple:Multicore1 Bt / core
- Scaling of semiconductor creates a true SoC (complete electronic system including all its periphery and interfaces on a single die)

Technology scaling and road map / Koji Miyamoto

Space needs

- > Space is user of nanoelectronic technology
 - Use of available technology
 - Take advantage of technology evolution

> Specific constraints

- Environment (radiation)
- Long term use (telecom ...)
- Out of repair (orbit)
- Weight and power consumption

> ... and wish list

- More and more integration (Processor core, Memory: RAM and flash or MRAM for all, IOs interfaces, Clock generators (PLLs): 10MHz external => 1Ghz internal, Control and FDIR functions: WDG, power management, reconfiguration ...
- Jean Louis' dream ...

Jean-Louis dream

- > If I have a big microcontroller including:
 - The processor core: SPARC with FPU
 - Enough speed memory: 16Mbytes upset protected
 - Clock generator: internal PLL
 - 6 high speed serial bus (1Gb/s spacewire ??) with internal network gateway
 - Internal WDG
 - Internal power management and supervisor
 - Low power
- > I could build a computing node in a chip...
- > I could build new architectures...
 - Multinode architecture: array, farm, hypercube
 - Easy to use and upgradable
 - Redundancy
- ➤ Is the T9000 transputer concept from INMOS reborn?

From SoC to NoC (1)

> SoC architecture issues

- Communication between blocks is bus based in SoC
- Bus is shared between internal blocks (Memory, DSP, ALU) and become a bottleneck
- High speed Synchronous behavior is a nightmare that challenges clock tree design, triggers voltage drop out, induces crass talk problems and other unwanted side effects
- It also need a lot of interconnections and a lot of power (to be everywhere as fast as possible even if it is not "needed"!)
- Power Dissipation of Bus Structure is poor in energy efficiency because each data transfer is broadcast
- Load capacitance of the entire bus has to be driven during each data transfer
- $P = 1/2 C f V^2$

>=> need of modularity, flexibility and advanced communication protocol between blocks = NoC

Lifetime considerations

From Joseph B. Bernstein (University of Maryland/Bar-Ilan University)

Noise margin issues

Integration consequences

- Direct consequences of integration (reliability Technology Requirements) for a long term reliability targeted between 10 to 100 FITs
- > Failure rate per transistor
 - Overall IC failure rate does not change with time
 - Number of transistors per chip increases
 - Relative failure rate per transistor must decrease
 - Relative from 1 (2005) to 0.2 (2013) => should be divided by 5
- > Failure rate per m of interconnect
 - Length of interconnect per chip increases
 - Failure rate per m of interconnect must decrease
 - Relative from 1 (2005) to 0.33 (2013) => should be divided by 3
 - Jmax (A/cm²) for intermediate wire at 105°C will move from 9 10⁵ to 8 10⁶
 - Important for reliability is the increase in the number of vias
- > Reliability issues are manageable (DiR) but are a growing challenge

NoC intrinsic advantages

> Allow better performances

> ... and a better intrinsic reliability

- Better internal (local) clock management
 - Low frequency parts
 - = =>lower voltage=> lower power dissipation (static and dynamic)
- Less interconnections
 - power dissipation = temperature / aging)
 - Less current = less electromigration, less HCI

> It can be more

- Playing with reconfigurability
- Some examples

cnes Lifetime Reliability-Aware Design

- > two methods for structural redundancy to enhance Lifetime Reliability
- > Structural Duplication
 - Certain redundant microarchitectural structures added to the processor
 - Spare structures can be turned on when the original structure fails, increasing the processor's lifetime
- > Graceful Performance Degradation (GPD)
 - Replicated structures that are used for increasing performance for some high parallelism applications
 - Replicated structures are not required for functional correctness so the processor can shut down a failed structure and still maintain functionality, thereby increasing lifetime.
 - Processor with GPD would fail only when all redundant structures of a type fail.

> NoC flexibility

- Dynamic load allocation
- Spare the ageed part (slower and higher consumption) when possible
- Move from HP to LP and vice versa

Conclusion

- > Nanoelectronic technology allows more and more complex system with an incredible level of performance
- > Space is looking for taking advantage of these technologies
- > On the other hand long term reliability is challenging
 - Lifetime, margin, integration issues
 - Managed by DiR ... but is getting more challenging
- > NoC architectures can solve SoC issues
 - At performance level
 - But also at reliability level
- > Need to be discussed to prepare the future